5 Exponential and Logarithmic Functions

Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved.

Objectives

Recognize and evaluate exponential functions with base a.

Graph exponential functions and use the One-to-One Property.

Recognize, evaluate, and graph exponential functions with base *e*.

Use exponential functions to model and solve real-life problems.

So far, this text has dealt mainly with **algebraic functions**, which include polynomial functions and rational functions.

In this chapter, you will study two types of nonalgebraic functions—*exponential functions* and *logarithmic functions*. These functions are examples of **transcendental functions**.

Definition of Exponential Function

The **exponential function** *f* **with base** *a* is denoted by

 $f(x) = a^x$

where $a > 0, a \neq 1$, and x is any real number.

The base a = 1 is excluded because it yields $f(x) = 1^x = 1$. This is a constant function, not an exponential function.

You have evaluated a^x for integer and rational values of x. For example, you know that $4^3 = 64$ and $4^{1/2} = 2$.

However, to evaluate 4^x for any real number *x*, you need to interpret forms with *irrational* exponents.

For the purposes of this text, it is sufficient to think of

$$a^{\sqrt{2}}$$
 (where $\sqrt{2} \approx 1.41421356$)

as the number that has the successively closer approximations

 $a^{1.4}, a^{1.41}, a^{1.414}, a^{1.4142}, a^{1.41421}, \ldots$

Example 1 – Evaluating Exponential Functions

Use a calculator to evaluate each function at the indicated value of *x*.

Function	Value
a. $f(x) = 2^x$	<i>x</i> = -3.1
b. $f(x) = 2^{-x}$	$X = \pi$
c. $f(x) = 0.6^x$	$X = \frac{3}{2}$

Example 1 – Solution

Function Value	Graphing Calculator Keystrokes	Display
a. <i>f</i> (-3.1) = 2 ^{-3.1}	2 (^) (-) 3.1 (ENTER)	0.1166291
b. $f(\pi) = 2^{-\pi}$	$2 \land (-) \pi$ (ENTER)	0.1133147
c. $f(\frac{3}{2}) = 0.6^{3/2}$.6 ^ (3 ÷ 2) ENTER	0.4647580

Example 2 – *Graphs of* $y = a^x$

In the same coordinate plane, sketch the graph of each function.

a. $f(x) = 2^x$ **b.** $g(x) = 4^x$

Example 2 – Solution

The following table lists some values for each function, and Figure 5.1 shows the graphs of the two functions.

Note that both graphs are increasing. Moreover, the graph of $g(x) = 4^x$ is increasing more rapidly than the graph of $f(x) = 2^x$.

The following summarizes the basic characteristics of exponential functions $y = a^x$ and $y = a^{-x}$.

- *x*-axis is a horizontal asymptote ($a^x \rightarrow 0$ as $x \rightarrow -\infty$).
- Continuous

Graph of $y = a^{-x}$, a > 1

- Domain: $(-\infty,\infty)$
- Range: (0,∞)
- *y*-intercept: (0, 1)
- Decreasing

- *x*-axis is a horizontal asymptote $(a^{-x} \rightarrow 0 \text{ as } x \rightarrow \infty)$.
- Continuous

Notice that the graph of an exponential function is always increasing or always decreasing.

As a result, the graphs pass the Horizontal Line Test, and therefore the functions are one-to-one functions.

You can use the following **One-to-One Property** to solve simple exponential equations.

For a > 0 and $a \neq 1$, $a^x = a^y$ if and only if x = y.

One-to-One Property

The Natural Base e

The Natural Base e

In many applications, the most convenient choice for a base is the irrational number

e ≈ 2.718281828

This number is called the natural base.

The function given by $f(x) = e^x$ is called the **natural exponential function.** Figure 5.7 shows its graph.

The Natural Base e

Be sure you see that for the exponential function

 $f(x) = e^x$, *e* is the constant 2.718281828 . . . , whereas *x* is the variable.

Example 6 – Evaluating the Natural Exponential Function

Use a calculator to evaluate the function $f(x) = e^x$ at each value of *x*.

- **a.** *x* = −2 **b.** *x* = −1
- **c.** *x* = 0.25

d. *x* = -0.3

Example 6 – Solution

Function Value	Graphing Calculator Keystrokes	Display
a. <i>f</i> (-2) = <i>e</i> ⁻²	e ^x (-) 2 (ENTER)	0.1353353
b. <i>f</i> (-1) = <i>e</i> ⁻¹	(e ^x) (-) 1 (ENTER)	0.3678794
c. $f(0.25) = e^{0.25}$	e^{x} 0.25 (ENTER)	1.2840254
d. $f(-0.3) = e^{-0.3}$	e^{x} (-) 0.3 ENTER	0.7408182

One of the most familiar examples of exponential growth is an investment earning *continuously compounded interest*. We know that the formula for *interest compounded n times per year* is

$$A = P\left(1 + \frac{r}{n}\right)^{nt}.$$

In this formula, A is the balance in the account, P is the principal (or original deposit), r is the annual interest rate (in decimal form), n is the number of compoundings per year, and t is the time in years.

Using exponential functions, you can now *develop* this formula and show how it leads to continuous compounding.

Suppose you invest a principal P at an annual interest rate r, compounded once per year. If the interest is added to the principal at the end of the year, the new balance P_1 is

$$P_1 = P + Pr$$

$$= P(1 + r).$$

This pattern of multiplying the previous principal by 1 + r repeats each successive year, as follows.

Year	Balance After Each Compounding
0	P = P
1	$P_1 = P(1 + r)$
2	$P_2 = P_1(1 + r) = P(1 + r)(1 + r) = P(1 + r)^2$
3	$P_3 = P_2(1 + r) = P(1 + r)^2(1 + r) = P(1 + r)^3$
÷	
t	$P_t = P(1 + r)^t$

To accommodate more frequent (quarterly, monthly, or daily) compounding of interest, let *n* be the number of compoundings per year and let *t* be the number of years.

Then the rate per compounding is r/n, and the account balance after t years is

$$A = P\left(1 + \frac{r}{n}\right)^{nt}.$$

Amount (balance) with *n* compoundings per year

When you let the number of compoundings *n* increase without bound, the process approaches what is called **continuous compounding.**

In the formula for *n* compoundings per year, let m = n/r. This produces

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$= P\left(1 + \frac{r}{mr}\right)^{mrt}$$

$$= P\left(1 + \frac{1}{m}\right)^{mrt}$$

$$= P \left[\left(1 + \frac{1}{m} \right)^m \right]^{rt}.$$

Amount with *n* compoundings per year

Substitute *mr* for *n*.

Simplify.

Property of exponents

As *m* increases without bound (that is, as $m \rightarrow \infty$), the table at the right shows that $[1 + (1/m)]^m \rightarrow e$.

From this, you can conclude that the formula for continuous compounding is

 $A = Pe^{rt}$. Substitute *e* for $(1 + 1/m)^m$.

т	$\left(1 + \frac{1}{m}\right)^m$
1	2
10	2.59374246
100	2.704813829
1,000	2.716923932
10,000	2.718145927
100,000	2.718268237
1,000,000	2.718280469
10,000,000	2.718281693
₩	¥
∞	е

Formulas for Compound Interest

After t years, the balance A in an account with principal P and annual interest rate r (in decimal form) is given by the following formulas.

1. For *n* compoundings per year:
$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

2. For continuous compounding: $A = Pe^{rt}$

Example 8 – Compound Interest

You invest \$12,000 at an annual rate of 3%. Find the balance after 5 years when the interest is compounded

- a. quarterly.
- **b.** monthly.
- **c.** continuously.

Example 8(a) – *Solution*

For quarterly compounding, you have n = 4. So, in 5 years at 3%, the balance is

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Formula for compound interest

$$= 12,000 \left(1 + \frac{0.03}{4}\right)^{4(5)}$$

Substitute for *P*, *r*, *n*, and *t*.

≈ \$13,934.21.

Use a calculator.

Example 8(b) – Solution

cont'd

For monthly compounding, you have n = 12. So, in 5 years at 3%, the balance is

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$= 12,000 \left(1 + \frac{0.03}{12}\right)^{12(5)}$$

Formula for compound interest

Substitute for *P*, *r*, *n*, and *t*.

≈ \$13,939.40.

Use a calculator.

Example 8(c) – Solution

cont'd

For continuous compounding, the balance is

- $A = Pe^{rt}$ Formula for continuous compounding
 - $= 12,000e^{0.03(5)}$ Substitute for *P*, *r*, and *t*.

≈ \$13,942.01.

Use a calculator.