Additional Topics in Trigonometry

Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved.

Objectives

- Find the dot product of two vectors and use the properties of the dot product.
- Find the angle between two vectors and determine whether two vectors are orthogonal.
- Write a vector as the sum of two vector components.
- Use vectors to find the work done by a force.

The Dot Product of Two Vectors

The Dot Product of Two Vectors

In this section, you will study a third vector operation, the **dot product.** This operation yields a scalar, rather than a vector.

Definition of the Dot Product

The **dot product** of $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ is

 $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2.$

The Dot Product of Two Vectors

Properties of the Dot Product

Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors in the plane or in space and let c be a scalar.

1.
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

2. $\mathbf{0} \cdot \mathbf{v} = 0$
3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
4. $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$
5. $c(\mathbf{u} \cdot \mathbf{v}) = c\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot c\mathbf{v}$

Example 1 – *Finding Dot Products*

a. $\langle 4, 5 \rangle \cdot \langle 2, 3 \rangle = 4(2) + 5(3)$

= 8 + 15

= 23

b. $\langle 2, -1 \rangle \cdot \langle 1, 2 \rangle = 2(1) + (-1)(2)$ = 2 - 2 = 0

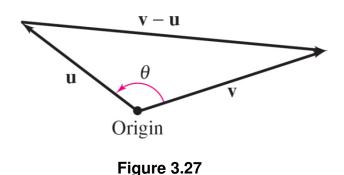
Example 1 – Finding Dot Products cont'd

c. $(0, 3) \cdot (4, -2) = 0(4) + 3(-2)$

= 0 - 6

= - 6

The **angle between two nonzero vectors** is the angle θ , $0 \le \theta \le \pi$, between their respective standard position vectors, as shown in Figure 3.27. This angle can be found using the dot product.



Angle Between Two Vectors

If θ is the angle between two nonzero vectors **u** and **v**, then

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Example 3 – Finding the Angle Between Two Vectors

Find the angle θ between $\mathbf{u} = \langle 4, 3 \rangle$ and $\mathbf{v} = \langle 3, 5 \rangle$ (see Figure 3.28).

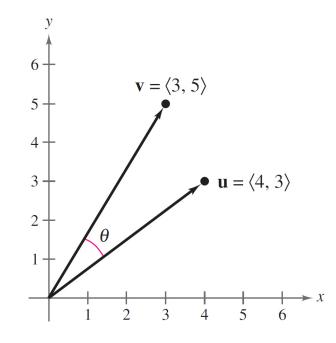


Figure 3.28

Example 3 – Solution

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$
$$= \frac{\langle 4, 3 \rangle \cdot \langle 3, 5 \rangle}{\|\langle 4, 3 \rangle\| \|\langle 3, 5 \rangle\|}$$
$$= \frac{4(3) + 3(5)}{\sqrt{4^2 + 3^2} \sqrt{3^2 + 5^2}}$$
$$= \frac{27}{5\sqrt{34}}$$

Example 3 – Solution

cont'd

This implies that the angle between the two vectors is

$$\theta = \cos^{-1} \frac{27}{5\sqrt{34}}$$

 ≈ 0.3869 radian. Use a calculator.

Rewriting the expression for the angle between two vectors in the form

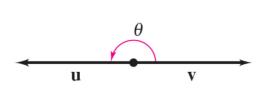
 $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$

Alternative form of dot product

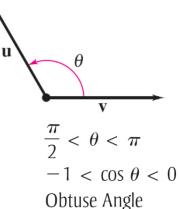
produces an alternative way to calculate the dot product.

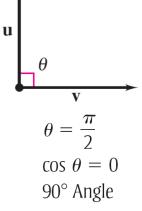
From this form, you can see that because $||\mathbf{u}||$ and $||\mathbf{v}||$ are always positive, $\mathbf{u} \cdot \mathbf{v}$ and $\cos \theta$ will always have the same sign.

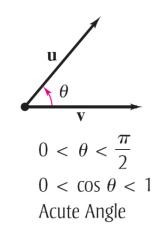
The five possible orientations of two vectors are shown below.

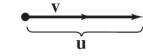


 $\theta = \pi$ $\cos \theta = -1$ Opposite Direction









 $\theta = 0$ $\cos \theta = 1$ Same Direction

Definition of Orthogonal Vectors

The vectors **u** and **v** are **orthogonal** if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

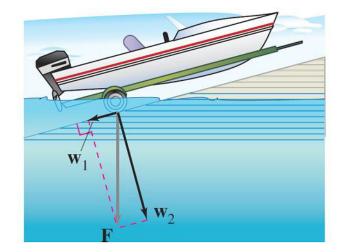
The terms *orthogonal* and *perpendicular* mean essentially the same thing—meeting at right angles.

Note that the zero vector is orthogonal to every vector \mathbf{u} , because $\mathbf{0} \cdot \mathbf{u} = 0$.

You have already seen applications in which two vectors are added to produce a resultant vector. Many applications in physics and engineering pose the reverse problem—decomposing a given vector into the sum of two **vector components**.

Consider a boat on an inclined ramp, as shown in Figure 3.29.

The force **F** due to gravity pulls the boat *down* the ramp and *against* the ramp.



These two orthogonal forces, w_1 and w_2 , are vector components of **F**. That is,

 $\mathbf{F} = \mathbf{W}_1 + \mathbf{W}_2.$

Vector components of ${\ensuremath{\mathsf{F}}}$

The negative of component w_1 represents the force needed to keep the boat from rolling down the ramp, whereas w_2 represents the force that the tires must withstand against the ramp.

A procedure for finding w_1 and w_2 is as shown below.

Definition of Vector Components

Let **u** and **v** be nonzero vectors such that

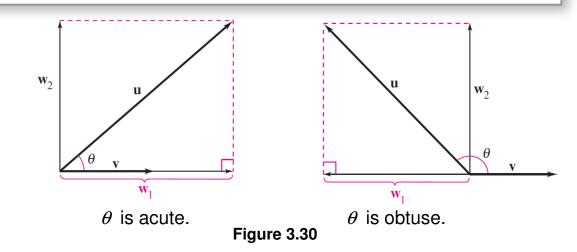
 $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$

where \mathbf{w}_1 and \mathbf{w}_2 are orthogonal and \mathbf{w}_1 is parallel to (or a scalar multiple of) \mathbf{v} , as shown in Figure 3.30. The vectors \mathbf{w}_1 and \mathbf{w}_2 are called **vector components** of \mathbf{u} . The vector \mathbf{w}_1 is the **projection** of \mathbf{u} onto \mathbf{v} and is denoted by

 $\mathbf{w}_1 = \text{proj}_{\mathbf{v}} \mathbf{u}.$

The vector \mathbf{w}_2 is given by

$$\mathbf{w}_2 = \mathbf{u} - \mathbf{w}_1.$$



20

From the definition of vector components, you can see that it is easy to find the component w_2 once you have found the projection of **u** onto **v**. To find the projection, you can use the dot product, as follows.

$$\mathbf{U} = \mathbf{W}_1 + \mathbf{W}_2$$

 $\mathbf{U} = C\mathbf{V} + \mathbf{W}_2 \qquad \qquad \mathbf{w}_1 \text{ is a scalar multiple of } \mathbf{v}.$

$$\mathbf{u} \cdot \mathbf{v} = (C\mathbf{v} + \mathbf{w}_2) \cdot \mathbf{v}$$

Take dot product of each side with $\boldsymbol{v}.$

 $\mathbf{U} \cdot \mathbf{V} = C\mathbf{V} \cdot \mathbf{V} + \mathbf{W}_2 \cdot \mathbf{V}$

$$\mathbf{u} \cdot \mathbf{v} = c ||\mathbf{v}||^2 + 0$$

 w_2 and v are orthogonal.

So,

$$c = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}$$

and

$$\mathbf{w}_1 = \operatorname{proj}_{\mathbf{v}} \mathbf{u} = c\mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v}.$$

Projection of u onto v

Let \mathbf{u} and \mathbf{v} be nonzero vectors. The projection of \mathbf{u} onto \mathbf{v} is

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}\right)\mathbf{v}.$$

22

Example 5 – *Decomposing a Vector into Components*

Find the projection of $\mathbf{u} = \langle 3, -5 \rangle$ onto $\mathbf{v} = \langle 6, 2 \rangle$. Then write \mathbf{u} as the sum of two orthogonal vectors, one of which is proj_v \mathbf{u} .

Solution:

The projection of **u** onto **v** is

$$\mathbf{w}_{1} = \operatorname{proj}_{\mathbf{v}}\mathbf{u}$$
$$= \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\right)\mathbf{v}$$
$$= \left(\frac{8}{40}\right)\langle 6, 2\rangle$$

Example 5 – Solution

cont'd

$$=\left\langle \frac{6}{5}, \frac{2}{5} \right\rangle$$

as shown in Figure 3.31.

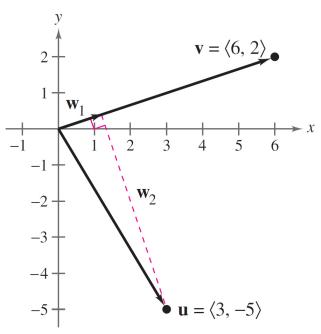


Figure 3.31

Example 5 – Solution

cont'd

The other component \mathbf{w}_2 , is

$$\mathbf{w}_{2} = \mathbf{u} - \mathbf{w}_{1}$$
$$= \langle 3, -5 \rangle - \left\langle \frac{6}{5}, \frac{2}{5} \right\rangle$$
$$= \left\langle \frac{9}{5}, -\frac{27}{5} \right\rangle.$$

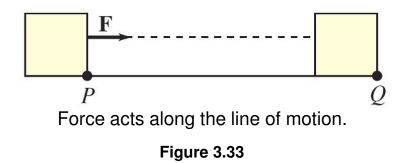
So,

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$$
$$= \left\langle \frac{6}{5}, \frac{2}{5} \right\rangle + \left\langle \frac{9}{5}, -\frac{27}{5} \right\rangle$$
$$= \langle 3, -5 \rangle.$$

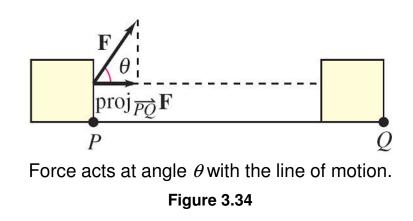
The work W done by a *constant* force **F** acting along the line of motion of an object is given by

 $W = (\text{magnitude of force})(\text{distance}) = \|\mathbf{F}\| \| \overrightarrow{PQ} \|$

as shown in Figure 3.33.



When the constant force **F** is not directed along the line of motion, as shown in Figure 3.34,



the work W done by the force is given by

$$W = \|\operatorname{proj}_{\overrightarrow{PQ}} \mathbf{F}\| \|\overrightarrow{PQ}\|$$

$$= (\cos \theta) \|\mathbf{F}\| \|\overrightarrow{PQ}\|$$

$$\|\operatorname{proj}_{\overrightarrow{PQ}} \mathbf{F}\| = (\cos \theta) \|\mathbf{F}\|$$

$= \mathbf{F} \cdot \overrightarrow{PQ}$. Dot product form for work

This notion of work is summarized in the following definition.

Definition of Work

The work *W* done by a constant force **F** as its point of application moves along the vector \overrightarrow{PQ} is given by either of the following.

- 1. $W = \| \operatorname{proj}_{\overrightarrow{PQ}} \mathbf{F} \| \| \overrightarrow{PQ} \|$
- 2. $W = \mathbf{F} \cdot \overrightarrow{PQ}$

Projection form

Dot product form

Example 7 – Finding Work

To close a sliding barn door, a person pulls on a rope with a constant force of 50 pounds at a constant angle of 60°, as shown in Figure 3.35. Find the work done in moving the barn door 12 feet to its closed position.

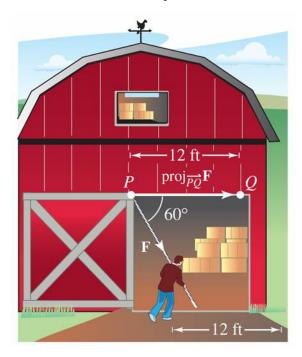


Figure 3.35

Example 7 – Solution

Using a projection, you can calculate the work as follows.

$$W = \|\operatorname{proj}_{\overrightarrow{PQ}} \mathbf{F}\| \| \overrightarrow{PQ} \|$$

$$= (\cos 60^\circ) \|\mathbf{F}\| \| \overline{PQ} \|$$

$$=\frac{1}{2}(50)(12)$$

= 300 foot-pounds

So, the work done is 300 foot-pounds.

You can verify this result by finding the vectors **F** and \overrightarrow{PQ} and calculating their dot product.