2 Analytic Trigonometry

2.3

Solving Trigonometric Equations

Objectives

- Use standard algebraic techniques to solve trigonometric equations.
- Solve trigonometric equations of quadratic type.
- Solve trigonometric equations involving multiple angles.
- Use inverse trigonometric functions to solve trigonometric equations.

To solve a trigonometric equation, use standard algebraic techniques (when possible) such as collecting like terms and factoring.

Your preliminary goal in solving a trigonometric equation is to *isolate* the trigonometric function on one side of the equation.

For example, to solve the equation $2 \sin x = 1$, divide each side by 2 to obtain

$$\sin x = \frac{1}{2}.$$

To solve for x, note in the figure below that the equation $\sin x = \frac{1}{2}$ has solutions $x = \pi/6$ and $x = 5\pi/6$ in the interval $[0, 2\pi)$.

Moreover, because $\sin x$ has a period of 2π , there are infinitely many other solutions, which can be written as

$$x = \frac{\pi}{6} + 2n\pi$$
 and $x = \frac{5\pi}{6} + 2n\pi$ General solution

where *n* is an integer, as shown above.

The figure below illustrates another way to show that the equation $\sin x = \frac{1}{2}$ has infinitely many solutions.

Any angles that are coterminal with $\pi/6$ or $5\pi/6$ will also be solutions of the equation.

When solving trigonometric equations, you should write your answer(s) using exact values rather than decimal approximations.

Example 1 – Collecting Like Terms

Solve
$$\sin x + \sqrt{2} = -\sin x$$
.

Solution:

Begin by isolating sin *x* on one side of the equation.

$$\sin x + \sqrt{2} = -\sin x$$

 $\sin x + \sin x + \sqrt{2} = 0$

$$\sin x + \sin x = -\sqrt{2}$$

Write original equation.

Add sin x to each side.

Subtract $\sqrt{2}$ from each side.

Example 1 – Solution

$$2\sin x = -\sqrt{2}$$

Combine like terms.

$$\sin x = -\frac{\sqrt{2}}{2}$$

Divide each side by 2.

Because $\sin x$ has a period of 2π , first find all solutions in the interval $[0, 2\pi)$.

These solutions are $x = 5\pi/4$ and $x = 7\pi/4$. Finally, add multiples of 2π to each of these solutions to obtain the general form

$$x = \frac{5\pi}{4} + 2n\pi$$
 and $x = \frac{7\pi}{4} + 2n\pi$ General solution

where *n* is an integer.

Equations of Quadratic Type

Equations of Quadratic Type

Many trigonometric equations are of quadratic type $ax^2 + bx + c = 0$, as shown below.

Quadratic in sin x

$$2 \sin^2 x - \sin x - 1 = 0$$

$$2(\sin x)^2 - \sin x - 1 = 0$$

Quadratic in sec x

$$\sec^2 x - 3 \sec x - 2 = 0$$

$$(\sec x)^2 - 3(\sec x) - 2 = 0$$

To solve equations of this type, factor the quadratic or, when this is not possible, use the Quadratic Formula.

Example 4 – Factoring an Equation of Quadratic Type

Find all solutions of $2 \sin^2 x - \sin x - 1 = 0$ in the interval $[0, 2\pi)$.

Solution:

Treat the equation as a quadratic in sin *x* and factor.

$$2 \sin^2 x - \sin x - 1 = 0$$

Write original equation.

$$(2 \sin x + 1)(\sin x - 1) = 0$$

Factor.

Example 4 – Solution

Setting each factor equal to zero, you obtain the following solutions in the interval $[0, 2\pi)$.

$$2 \sin x + 1 = 0$$
 and $\sin x - 1 = 0$

$$\sin x = -\frac{1}{2} \qquad \qquad \sin x = 1$$

$$x = \frac{7\pi}{6}, \frac{11\pi}{6}$$

$$x = \frac{\pi}{2}$$

Functions Involving Multiple Angles

Functions Involving Multiple Angles

The next example involve trigonometric functions of multiple angles of the forms cos *ku* and tan *ku*.

To solve equations of these forms, first solve the equation for ku, and then divide your result by k.

Example 7 – Solving a Multiple-Angle Equation

Solve $2 \cos 3t - 1 = 0$.

Solution:

$$2\cos 3t - 1 = 0$$

$$2 \cos 3t = 1$$

$$\cos 3t = \frac{1}{2}$$

Write original equation.

Add 1 to each side.

Divide each side by 2.

Example 7 – Solution

In the interval $[0, 2\pi)$, you know that $3t = \pi/3$ and $3t = 5\pi/3$ are the only solutions, so, in general, you have

$$3t = \frac{\pi}{3} + 2n\pi$$
 and $3t = \frac{5\pi}{3} + 2n\pi$.

Dividing these results by 3, you obtain the general solution

$$t = \frac{\pi}{9} + \frac{2n\pi}{3}$$
 and $t = \frac{5\pi}{9} + \frac{2n\pi}{3}$ General solution

where *n* is an integer.

Using Inverse Functions

Example 9 – *Using Inverse Functions*

$$\sec^2 x - 2 \tan x = 4$$

Original equation

$$1 + \tan^2 x - 2 \tan x - 4 = 0$$

Pythagorean identity

$$\tan^2 x - 2 \tan x - 3 = 0$$

Combine like terms.

$$(\tan x - 3)(\tan x + 1) = 0$$

Factor.

Setting each factor equal to zero, you obtain two solutions in the interval $(-\pi/2, \pi/2)$. [We know that the range of the inverse tangent function is $(-\pi/2, \pi/2)$.]

$$x = \arctan 3$$
 and $x = \arctan(-1) = -\pi/4$

Example 9 – Using Inverse Functions Cont'd

Finally, because $\tan x$ has a period of π , you add multiples of π to obtain

$$x = \arctan 3 + n\pi$$
 and $x = (-\pi/4) + n\pi$ General solution

where *n* is an integer.

You can use a calculator to approximate the value of arctan 3.