2 Analytic Trigonometry

Copyright © Cengage Learning. All rights reserved.

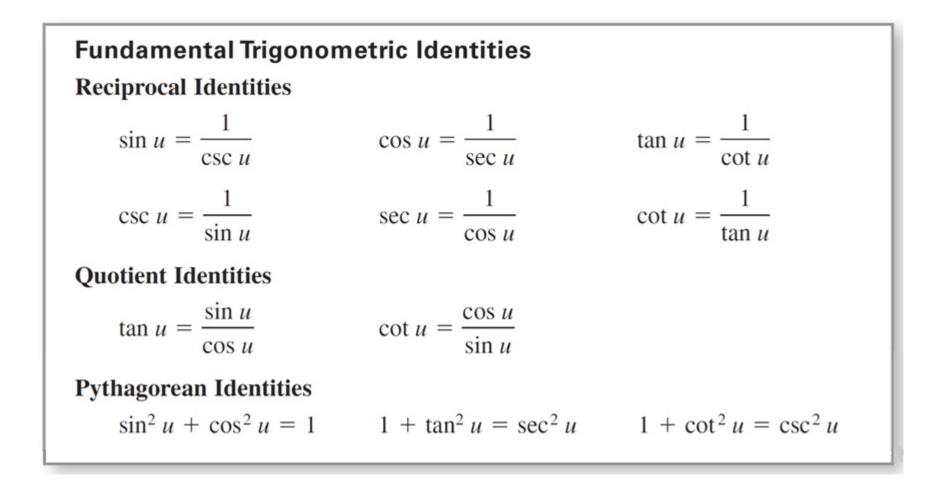
Copyright © Cengage Learning. All rights reserved.

Objectives

- Recognize and write the fundamental trigonometric identities.
- Use the fundamental trigonometric identities to evaluate trigonometric functions, simplify trigonometric expressions, and rewrite trigonometric expressions.

You will learn how to use the fundamental identities to do the following.

- **1.** Evaluate trigonometric functions.
- **2.** Simplify trigonometric expressions.
- **3.** Develop additional trigonometric identities.
- 4. Solve trigonometric equations.



Cofunction Identities $\sin\left(\frac{\pi}{2} - u\right) = \cos u \qquad \cos\left(\frac{\pi}{2} - u\right) = \sin u$ $\tan\left(\frac{\pi}{2} - u\right) = \cot u \qquad \cot\left(\frac{\pi}{2} - u\right) = \tan u$ $\sec\left(\frac{\pi}{2} - u\right) = \csc u \qquad \csc\left(\frac{\pi}{2} - u\right) = \sec u$ Even/Odd Identities $\sin(-u) = -\sin u \qquad \cos(-u) = \cos u \qquad \tan(-u) = -\tan u$ $\csc(-u) = -\csc u \qquad \sec(-u) = \sec u \qquad \cot(-u) = -\cot u$

Pythagorean identities are sometimes used in radical form such as

$$\sin u = \pm \sqrt{1 - \cos^2 u}$$

or

$$\tan u = \pm \sqrt{\sec^2 u - 1}$$

where the sign depends on the choice of *u*.

Using the Fundamental Identities

Using the Fundamental Identities

One common application of trigonometric identities is to use given values of trigonometric functions to evaluate other trigonometric functions.

Example 1 – Using Identities to Evaluate a Function

Use the values sec $u = -\frac{3}{2}$ and tan u > 0 to find the values of all six trigonometric functions.

Solution:

Using a reciprocal identity, you have

$$\cos u = \frac{1}{\sec u} = \frac{1}{-3/2} = -\frac{2}{3}.$$

Using a Pythagorean identity, you have

 $\sin^2 u = 1 - \cos^2 u$ Pythagorean identity

Example 1 – Solution

$$= 1 - \left(-\frac{2}{3}\right)^2$$
 Substitute $-\frac{2}{3}$ for $\cos u$.
$$= \frac{5}{9} \cdot$$
 Simplify.

Because sec u < 0 and tan u > 0, it follows that u lies in Quadrant III.

Moreover, because sin *u* is negative when *u* is in Quadrant III, choose the negative root and obtain

$$\sin u = -\sqrt{5}/3.$$

cont'd

Example 1 – Solution

cont'd

Knowing the values of the sine and cosine enables you to find the values of all six trigonometric functions.

 $\sqrt{5}$

$$\sin u = -\frac{\sqrt{5}}{3}$$
$$\cos u = -\frac{2}{3}$$
$$\sin u = -\sqrt{5}/3$$

$$\tan u = \frac{\sin u}{\cos u} = \frac{\sqrt{3/3}}{-2/3} = \frac{\sqrt{3}}{2}$$

Example 1 – Solution

$$\csc u = \frac{1}{\sin u} = -\frac{3}{\sqrt{5}} = -\frac{3\sqrt{5}}{5}$$

 $\sec u = \frac{1}{\cos u} = -\frac{3}{2}$

$$\cot u = \frac{1}{\tan u} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

Example 2 – *Simplifying a Trigonometric Expression*

Simplify

 $\sin x \cos^2 x - \sin x.$

Solution:

First factor out a common monomial factor and then use a fundamental identity.

 $= -\sin x(1 - \cos^2 x)$

= $-\sin x(\sin^2 x)$

 $\sin x \cos^2 x - \sin x = \sin x (\cos^2 x - 1)$

Factor out common monomial factor.

Factor out -1.

Pythagorean identity

$$= -\sin^3 x$$

Multiply.

Using the Fundamental Identities

When factoring trigonometric expressions, it is helpful to find a special polynomial factoring form that fits the expression.

On occasion, factoring or simplifying can best be done by first rewriting the expression in terms of just *one* trigonometric function or in terms of *sine and cosine only*.

Example 7 – Rewriting a Trigonometric Expression

Rewrite $\frac{1}{1 + \sin x}$ so that it is *not* in fractional form.

Solution:

From the Pythagorean identity $\cos^2 x = 1 - \sin^2 x = (1 - \sin x)(1 + \sin x)$ multiplying both the numerator and the denominator by $(1 - \sin x)$ will produce a monomial denominator.

$$\frac{1}{1+\sin x} = \frac{1}{1+\sin x} \cdot \frac{1-\sin x}{1-\sin x}$$
Multiply numerator and
denominator by (1 - sin x).
$$= \frac{1-\sin x}{1-\sin^2 x}$$
Multiply.

Example 7 – Solution

$=\frac{1-\sin x}{\cos^2 x}$	Pythagorean identity
$=\frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x}$	Write as separate fractions.
$=\frac{1}{\cos^2 x} - \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x}$	Product of fractions
$= \sec^2 x - \tan x \sec x$	Reciprocal and quotient identities