Trigonometry

Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved.

Objectives

- Evaluate trigonometric functions of any angle.
- Find reference angles.
- Evaluate trigonometric functions of real numbers.

The definitions of trigonometric functions were restricted to acute angles. In this section, the definitions are extended to cover *any* angle. When θ is an *acute* angle, the definitions here coincide with those given in the preceding section.

Definitions of Trigonometric Functions of Any Angle Let θ be an angle in standard position with (x, y) a point on the terminal side of θ and $r = \sqrt{x^2 + y^2} \neq 0$. $\sin \theta = \frac{y}{r}$, $x \neq 0$, $\cos \theta = \frac{x}{r}$, $y \neq 0$ $\sec \theta = \frac{r}{x}$, $x \neq 0$, $\csc \theta = \frac{r}{y}$, $y \neq 0$

Because $r = \sqrt{x^2 + y^2}$ cannot be zero, it follows that the sine and cosine functions are defined for any real value of θ .

However, when x = 0, the tangent and secant of θ are undefined.

For example, the tangent of 90° is undefined. Similarly, when y = 0, the cotangent and cosecant of θ are undefined.

Example 1 – Evaluating Trigonometric Functions

Let (-3, 4) be a point on the terminal side of θ . Find the sine, cosine, and tangent of θ .

Solution:

Referring to Figure 1.27, you can see that x = -3, y = 4, and

Figure 1.27

Example 1 – Solution

cont'd

So, you have the following.

$$\sin \theta = \frac{y}{r} = \frac{4}{5}$$
$$\cos \theta = \frac{x}{r} = -\frac{3}{5}$$
$$\tan \theta = \frac{y}{x} = -\frac{4}{3}$$

The *signs* of the trigonometric functions in the four quadrants can be determined from the definitions of the functions.

For instance, because $\cos \theta = x/r$, it follows that $\cos \theta$ is positive wherever x > 0, which is in Quadrants I and IV. (Remember, *r* is always positive.)

In a similar manner, you can verify the results shown in Figure 1.28.

Reference Angles

Reference Angles

The values of the trigonometric functions of angles greater than 90° (or less than 0°) can be determined from their values at corresponding acute angles called **reference angles**.

Definition of Reference Angle

Let θ be an angle in standard position. Its **reference angle** is the acute angle θ' formed by the terminal side of θ and the horizontal axis.

Reference Angles

The reference angles for θ in Quadrants II, III, and IV are shown below.

Example 4 – *Finding Reference Angles*

Find the reference angle θ' .

a. $\theta = 300^{\circ}$

b. θ = 2.3

c. $\theta = -135^{\circ}$

Example 4(a) – Solution

Because 300° lies in Quadrant IV, the angle it makes with the *x*-axis is

 $\theta' = 360^\circ - 300^\circ$

= 60°. Degrees

Figure 1.30 shows the angle $\theta = 300^{\circ}$ and its reference angle $\theta' = 60^{\circ}$.

Figure 1.30

Example 4(b) – Solution

Because 2.3 lies between $\pi/2 \approx 1.5708$ and $\pi \approx 3.1416$, it follows that it is in Quadrant II and its reference angle is

 $\theta' = \pi - 2.3$

≈ 0.8416. Radians

Figure 1.31 shows the angle $\theta = 2.3$ and its reference angle $\theta' = \pi - 2.3$.

Figure 1.31

Example 4(c) – Solution

cont'd

First, determine that –135° is coterminal with 225°, which lies in Quadrant III. So, the reference angle is

 $\theta' = 225^\circ - 180^\circ$

= 45°. Degrees

Figure 1.32 shows the angle $\theta = -135^{\circ}$ and its reference angle $\theta' = 45^{\circ}$.

To see how a reference angle is used to evaluate a trigonometric function, consider the point (x, y) on the terminal side of θ , as shown in figure below.

By definition, you know that

$$\sin \theta = \frac{y}{r}$$
 and $\tan \theta = \frac{y}{x}$.

For the right triangle with acute angle θ' and sides of lengths |x| and |y|, you have

$$\sin\theta' = \frac{\mathrm{opp}}{\mathrm{hyp}} = \frac{|y|}{r}$$

and

$$\tan \theta' = \frac{\operatorname{opp}}{\operatorname{adj}} = \frac{|y|}{|x|}.$$

So, it follows that sin θ and sin θ' are equal, *except possibly in sign*. The same is true for tan θ and tan θ' and for the other four trigonometric functions.

In all cases, the quadrant in which θ lies determines the sign of the function value.

Evaluating Trigonometric Functions of Any Angle

To find the value of a trigonometric function of any angle θ :

- 1. Determine the function value of the associated reference angle θ' .
- 2. Depending on the quadrant in which θ lies, affix the appropriate sign to the function value.

You can greatly extend the scope of *exact* trigonometric values.

For instance, knowing the function values of 30° means that you know the function values of all angles for which 30° is a reference angle.

For convenience, the table below shows the exact values of the sine, cosine, and tangent functions of special angles and quadrant angles.

θ (degrees)	0°	30°	45°	60°	90°	180°	270°
θ (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Undef.	0	Undef.

Trigonometric Values of Common Angles

Example 5 – Using Reference Angles

Evaluate each trigonometric function.

a.
$$\cos \frac{4\pi}{3}$$

b. tan(-210°)

C. CSC
$$\frac{11\pi}{4}$$

Example 5(a) – *Solution*

Because $\theta = 4\pi/3$ lies in Quadrant III, the reference angle

is

$$\theta' = \frac{4\pi}{3} - \pi$$
$$= \frac{\pi}{3}$$

as shown in Figure 1.33.

Moreover, the cosine is negative in Quadrant III, so

$$\cos\frac{4\pi}{3} = (-)\cos\frac{\pi}{3}$$
$$= -\frac{1}{2}.$$

Figure 1.33

Example 5(b) – Solution

cont'd

Because $-210^\circ + 360^\circ = 150^\circ$, it follows that -210° is coterminal with the second-quadrant angle 150°.

So, the reference angle is $\theta' = 180^\circ - 150^\circ = 30^\circ$, as shown in Figure 1.34.

Example 5(b) – Solution

cont'd

Finally, because the tangent is negative in Quadrant II, you have

$$\tan(-210^\circ) = (-) \tan 30^\circ$$

= $-\frac{\sqrt{3}}{3}$.

Example 5(c) – *Solution*

Because $(11\pi/4) - 2\pi = 3\pi/4$, it follows that $11\pi/4$ is coterminal with the second-quadrant angle $3\pi/4$.

So, the reference angle is $\theta' = \pi - (3\pi/4) = \pi/4$, as shown in Figure 1.35.

cont'd

Example 5(c) – Solution

cont'd

Because the cosecant is positive in Quadrant II, you have

$$\csc \frac{11\pi}{4} = (+) \csc \frac{\pi}{4}$$
$$= \frac{1}{\sin(\pi/4)}$$
$$= \sqrt{2}.$$