Environmental Science, 15e G. TYLER MILLER | SCOTT E. SPOOLMAN

5

Species Interactions, Ecological Succession, and Population Control

Core Case Study: The Southern Sea Otter – A Species in Recovery

- At one time, 13,000-20,000 sea otters lived in the waters off the coast of California
 - By 1938, only about 50 were left
 - In 1977, they were declared an endangered species
 - In 2013, numbers are about 2,900
- How would the loss of the seal otter affect the biodiversity of these coastal waters?

5.1 How Do Species Interact?

- Five ways in which species interact
 - Interspecific competition
 - Predation
 - Parasitism
 - Mutualism
 - Commensalism
- All of these affect resource use and population size

Most Species Compete with One Another for Certain Resources

- Species share limited resources
 - Food
 - Shelter
 - Space

Interspecific Competition

- The most common type of interaction:
 - When two species compete for the same resource, their niches overlap
 - Resource partitioning
 - Occurs when competing species evolve specialized traits that allow them to use shared resources at different times, in different ways, or in different places

Sharing the Wealth

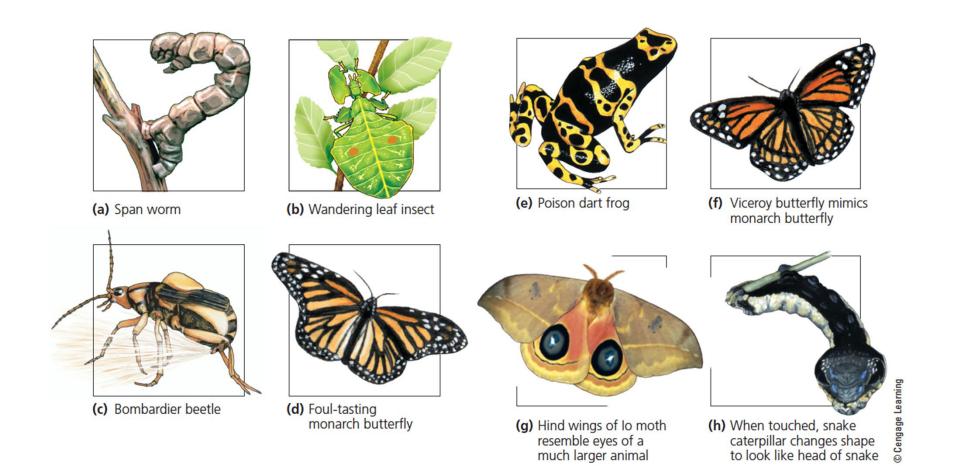
After R. H. MacArthur, "Population Ecology of Some Warblers in Northeastern Coniferous Forests," Ecology 36:533-536, 1958.

© 2016 Cengage Learning. All Rights Reserved.

Predation

- When an individual of one species (predator) feeds directly on another plant or animal species
 - The two species are engaged in a predator-prey relationship
 - This has a strong effect on population size and other factors

How Do Predators Capture Their Prey?


- Herbivores can walk up to their prey (plants)
- Carnivores have a variety of methods to capture to prey:
 - Running and flying
 - Working together to hunt
 - Ambush
 - Camouflage
 - Attack with chemical warfare

How Do Prey Species Avoid Predators?

- Run, swim, or fly fast
- Highly developed senses of sight, hearing or smell
- Physical protection shells, thick bark, spines
- Camouflage shapes and colors
- Chemical warfare poisons, irritating (stinging), foul-smelling or bad tasting (can be poisonous)

Consumer Species Feed on Other Species

- How do prey species avoid predators?
 - Mimicry when a non-poisonous species looks like (mimics) a species that is poisonous
 - Behavior strategies -- such as scaring off, puffing up, spreading wings, mimicking a predator, living in large groups (schools), or exhibiting warning coloration (indicating "eating me is risky")


Interactions Between Predator and Prey Species Can Drive Each Other's Evolution

- Coevolution -- when populations of two different species interact over a long period of time, changes in the gene pool of one species can lead to changes in the gene pool of the other
- Complex predator-prey relationships play an important role in controlling population growth and providing ecosystem services
- The introduction of nonnative predator species can disrupt these relationships
 © 2016 Cengage Learning. All Rights Reserved.

Some Species Feed Off Other Species by Living On or Inside Them

- Parasitism occurs when one species
 (parasite) feeds on the body of, or the energy
 used by another organism (host) usually by
 living on or in the host
 - A parasite is usually much smaller than its host and rarely kills it
 - Parasites can live inside the host (tapeworms)
 - Others are attach themselves to the outside of host (mistletoe, sea lampreys)

Parasitism

Great Lakes Fishery Commission

In Some Interactions, Both Species Benefit

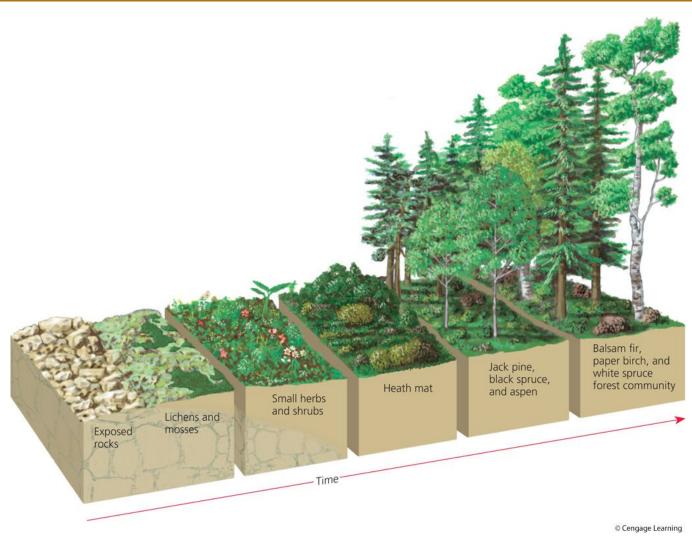
- Mutualism occurs when two species behave in ways that benefit both
 - Providing each with food, shelter, protection, or some other resources
 - Examples:
 - Birds that ride on the backs of large animals and remove pests (African buffalo)
 - Bacteria that live in our intestines and help us digest food

Mutualism

Villiers Steyn/Dreamstime.com

In Some Interactions, One Species Benefits and the Other is Not Harmed

- Commensalism occurs when one species benefits from species interaction, and the other is not affected or harmed at all
 - Example: air plants known as epiphytes attach themselves to the trunks or branches of large trees to access sunlight

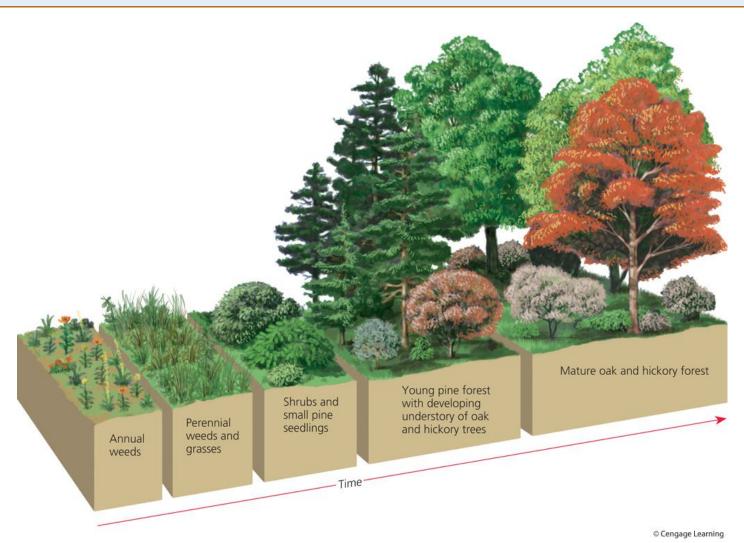

5.2 How Do Communities Ecosystems Respond to Changing Environments?

- Ecological succession
 - The normal, gradual change in species composition in a given geographic area
 - The species composition of an ecosystem or community can change in response to changing environmental conditions
 - Primary and secondary succession are examples of natural ecological restoration

Primary Ecological Succession

- The gradual establishment of biotic communities in lifeless areas where there is no soil in a terrestrial ecosystem or no bottom sediment in an aquatic system
 - Takes hundreds to thousands of years

Primary Ecological Succession – Illustrated


Secondary Ecological Succession

- Occurs where communities or ecosystems have been disturbed, removed or destroyed, but retain some soil or bottom sediments
- Enriches biodiversity of communities and ecosystems by increasing species diversity and interaction among species

Secondary Succession Also Enhances Sustainability

- Promotes population control
 - Increases the complexity of food webs
 - Enhances energy flow
 - Increases nutrient cycling

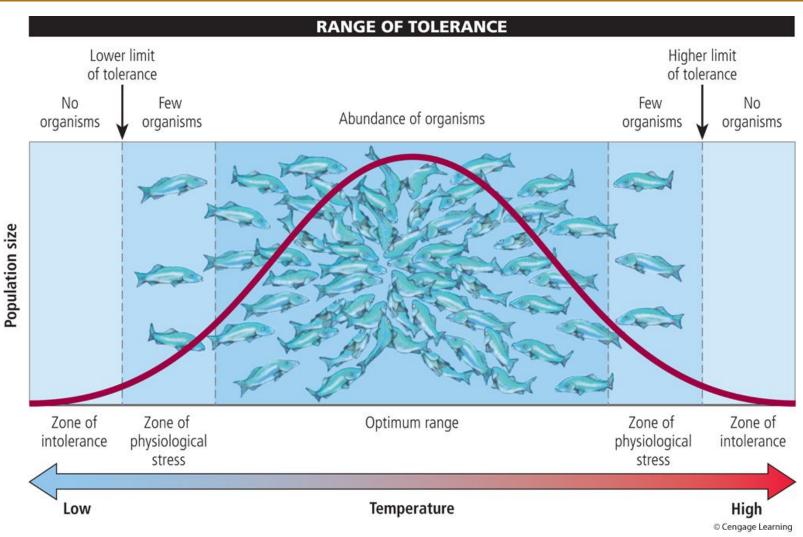
Secondary Ecological Succession – Illustrated

Living Systems Are Sustained Through Constant Change

- Contain complex processes that interact to provide some degree of stability or sustainability
 - Withstand external stress in response to changing environmental conditions
- Two aspects of stability/sustainability:
 - Inertia (persistence)
 - Resilience

5.3 What Limits the Growth of Populations?

- Populations cannot grow indefinitely due to:
 - Limitations on resources
 - Competition among species for these resources


Populations Can Grow, Shrink, or Remain Stable

- A population is a group of interbreeding individuals of the same species, living together in the same geographic area
- Population size can change based on:
 - Births/deaths
 - Immigration (arrival of individuals from outside the population)
 - Emigration (departure of individuals from the population)

Some Factors Can Limit Population Size

- Each population in an ecosystem has a range of tolerance – its ability to survive under various physical and chemical environmental conditions
 - Some individuals in a population may also have different ranges of tolerance for temperature or other physical or chemical factors – known as limiting factors

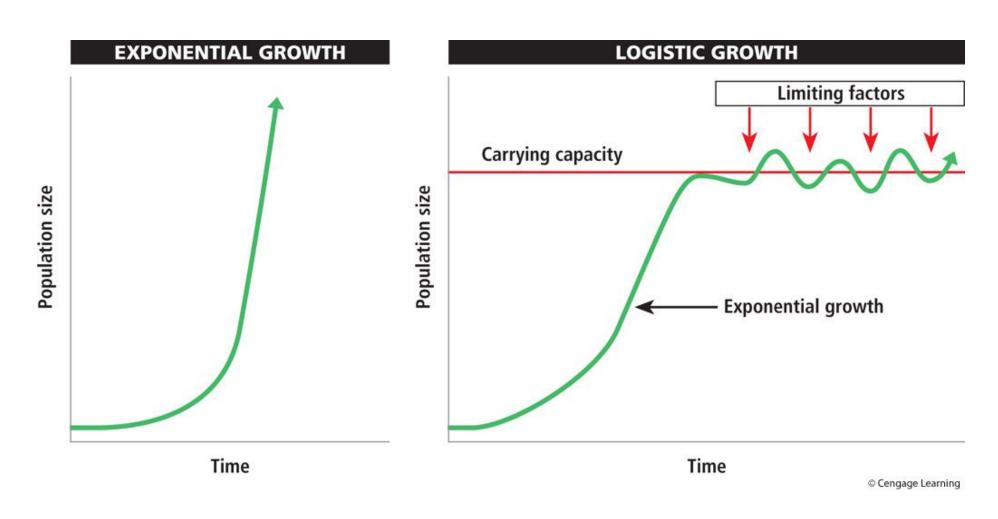
Range of Tolerance

Limiting Factors Can be Physical or Chemical

- Examples
 - On land, precipitation is often a limiting factor
 - In aquatic ecosystems, limiting factors can be:
 - Temperature, water depth, clarity (allowing for more or less sunlight), nutrient availability, acidity, salinity, and the level of oxygen in the water
- An excess of a limiting factor can itself be limiting
 - Too much water on land or too much acidity in aquatic environments

Density-Dependent and Density-Independent Factors

- Population density: the number of individuals in a given geographic area
 - Density-dependent factors become more important as a population size increases
 - Parasites and diseases spread more easily
 - Sexually reproducing individuals can find mates more easily
 - Density-independent factors
 - Drought and climate

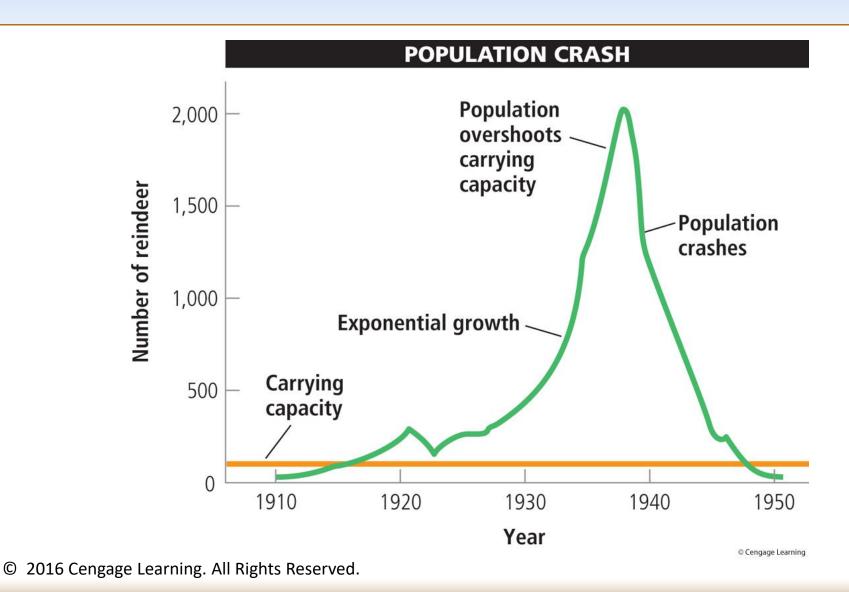

No Population Can Grow Indefinitely: J-Curves

- Some species reproduce and grow exponentially
- Plotting this data generates a J-curve showing exponential growth
 - Members reproduce at an early age; many offspring in each generation; time between generations is short
- All species have population growth limits
 - Sunlight, water, temperature, space, nutrients

No Population Can Grow Indefinitely: S-Curves

- Environmental resistance
 - The sum of all factors that limit the growth of a population
- Carrying capacity:
 - The maximum population of a given species that a habitat can sustain indefinitely
 - As the population approaches its carrying capacity, its J-curve becomes an S-curve of fluctuating logistic growth

J-Curves and S-Curves – Illustrated



© 2016 Cengage Learning. All Rights Reserved.

No Population Can Grow Indefinitely: Population Crash

- When a population overshoots the carrying capacity, the population sharply declines
 - Dieback, or population crash
- Now a population must either:
 - Stabilize its population
 - Switch to new resources
 - Move to a new geographic area

Population Crash – Illustrated

Species Have Different Reproductive Patterns – *r*-selected species

- r-selected species have a capacity for a high rate of population increase
 - Have short life spans
 - Have many, usually small offspring
 - Do not provide much parental care/protection
 - Offspring loss is overcome by massive offspring production, so that at least a few will survive

Species Have Different Reproductive Patterns – Opportunists

- Opportunists reproduce rapidly under favorable environmental conditions
 - Often occurs after a fire or clearing an area that opens up a new habitats or niches for invasion of a new species
 - May crash after growth or when yet another species invades the area
 - Go through irregular and unstable boom-and-bust cycles

Species Have Different Reproductive Patterns – *k*-Selected Species

- k-selected species do well in competitive conditions when population size nears carrying capacity
 - Reproduce later in life
 - Have smaller numbers of offspring with longer life spans
 - Typically develop inside their mothers and are born fairly large
 - After birth, they mature slowly and are protected by one or both parents

Species Vary in Their Typical Life Span

- Because different species have different reproductive rates, they also have different life expectancies (illustrated by survivorship graphs)
- Three kinds of survivorship curves:
 - Late loss
 - Early loss
 - Constant loss

Humans Are Not Exempt from Nature's Population Controls

- Human populations can crash
 - Ireland's 1845 population crash after a fungus destroyed the potato crop
 - The 14th century plague spread through crowed cities with poor sanitary conditions
- The earth's carrying capacity for humans is expanding due to technological, social, and cultural changes

Additional Case Study: The Giant Sequoia – In Competition

- Giant sequoia trees live in old growth forests in the Sierras
 - To succeed, these trees must compete for light, grow very tall, develop extensive roots and, live a long life
- After 150 200 years, these trees become reproductive and release thousands of seeds from pine cones

Additional Case Study: The Giant Sequoia – An Uncertain Future

- This stable ecosystem is rapidly changing due to global warming – affecting water availability/temperature (limiting factors)
 - Are sequoia trees k-selected species, r-selected species, or somewhere in-between?
 - Can sequoia trees successfully reseed themselves outside of their natural habitat?
 - Can humans change the effects of warming temperatures/drier conditions on sequoias?

Sequoias and the Big Three

- Giant sequoia trees must compete with all old growth forest species for light – which is scarce and limits their population size
 - Climate change is drying and warming their natural habitat – if left unchecked, changes in species composition (ecological succession) could follow
 - Moisture and temperature are significant limiting factors to the population growth of giant sequoia trees