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Hybridization 

 The mixing of native orbitals to form special 
orbitals for bonding 

 sp3 orbitals - Formed from one 2s and three 2p 
orbitals 

 Atoms that undergo this process are said to be sp3 
hybridized 
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Figure 9.3 - sp3 Hybridization of a Carbon Atom 
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 Gives importance to the total number of electrons 
and the arrangement of these electrons in the 
molecule 

 Example - Hybridization of the carbon 2s and 2p 
orbitals in methane 

Orbital Energy-Level Diagram 
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Key Principle in sp3 Hybridization 

 Whenever an atom requires a set of equivalent 
tetrahedral atomic orbitals, this model assumes 
that the atom adopts a set of sp3 orbitals 

 The atom undergoes sp3 hybridization 
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Figure 9.6 - Tetrahedral Set of Four sp3 Orbitals 
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Critical Thinking 

 What if the sp3 hybrid orbitals were higher in 
energy than the p orbitals in the free atom? 

 How would this affect our model of bonding? 
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Example 9.1 - The Localized Electron Model I 

 Describe the bonding in the ammonia molecule 
using the localized electron model 
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Example 9.1 - Solution 

 A complete description of the bonding involves 
three steps 

 Writing the Lewis structure 

 Determining the arrangement of electron pairs using 
the VSEPR model 

 Determining the hybrid atomic orbitals needed to 
describe the bonding in the molecule 
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Example 9.1 - Solution (Continued 1) 

 Lewis structure for NH3 

 

 

 The four electron pairs around the nitrogen atom 
require a tetrahedral arrangement to minimize 
repulsions 

 A tetrahedral set of sp3 hybrid orbitals is obtained by 
combining the 2s and three 2p orbitals 
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Example 9.1 - Solution (Continued 2) 

 In the NH3 molecule, three of the sp3 orbitals are used 
to form bonds to the three hydrogen atoms, and the 
fourth sp3 orbital holds the lone              
pair 
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sp2 Hybridization 

 Combination of one 2s and two 2p orbitals 

 Gives a trigonal planar arrangement of atomic 
orbitals 

 Bond angles - 120 degrees 

 One 2p orbital is not used 

 Oriented perpendicular to the plane of the sp2 orbitals 

13 



Section 9.1 
Hybridization and the Localized Electron Model 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Figure 9.8 - Formation of sp2 Orbitals 
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Figure 9.9 - Orbital Energy-Level Diagram for the 
Formation of sp2 Orbitals in Ethylene 
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Figure 9.10 - sp2 Hybridization 
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Types of sp2 Hybridized Bonds 

 Sigma () bond: Formed by electron sharing in an 
area centered on a line running between the 
atoms 

 Pi () bond: Parallel p orbitals share an electron 
pair occupying the space above and below the  
bond  

 A double bond always consists of one  bond and 
one  bond 
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Key Principle in sp2 Hybridization 

 If an atom is surrounded by three effective pairs, 
a set of sp2 hybrid orbitals is required  
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sp Hybridization 

 Involves one s and one p orbital 

 Two effective pairs around an atom will always 
requires sp hybridization 

 Example - Carbon atoms in carbon dioxide 

 Two 2p orbitals are unaffected 

 Used in formation of π bonds with oxygen atoms 
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Figure 9.14 - Formation of sp Orbitals 
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Figure 9.15 - Hybrid Orbitals in the CO2 Molecule 
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Figure 9.16 - Orbital Energy-Level Diagram for the 
Formation of sp Hybrid Orbitals on Carbon 
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Figure 9.17 - An sp Hybridized Carbon Atom 
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Figure 9.19 (a) - Orbitals Forming Bonds in Carbon 
Dioxide 
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Example 9.2 - The Localized Electron Model II 

 Describe the bonding in the N2 molecule 
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Example 9.2 - Solution  

 The Lewis structure for N2 is  

 Each nitrogen atom is surrounded by two 
effective pairs 

 Gives a linear arrangement requiring a pair of 
oppositely directed orbitals 

 Requires sp hybridization 
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Example 9.2 - Solution (Continued 1) 

 Each nitrogen atom has two sp hybrid orbitals and 
two unchanged p orbitals 
 sp orbitals form the  bond between the nitrogen 

atoms and hold lone pairs  

 p orbitals form the two  bonds 

 Each pair of overlapping parallel p orbitals holds 
one electron pair 
 Accounts for electron arrangement given in the Lewis 

structure 
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Example 9.2 - Solution (Continued 2) 

 The triple bond consists of a  bond and two  
bonds 

 A lone pair occupies an sp orbital on each 
nitrogen atom 
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 Combination of one d, one s, and three p orbitals 

 A set of five effective pairs around a given atom 
always requires a trigonal bipyramidal 
arrangement 

 Requires dsp3 hybridization of              
that atom 

dsp3 Hybridization 
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 Each chlorine atom in PCl5 is surrounded by four 
electron pairs 

 Requires a tetrahedral arrangement 

 Each chlorine atom requires four sp3 orbitals  

 

dsp3 Hybridization (Continued) 
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Example 9.3 - The Localized Electron Model III 

 Describe the bonding in the triiodide ion (I3
–) 
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Example 9.3 - Solution  

 The Lewis structure for I3
– 

 

 

 

 The central iodine atom has five pairs of electrons 
 Requires a trigonal bipyramidal arrangement, which in turn 

requires a set of dsp3 orbitals 

 Outer iodine atoms have four pairs of electrons 

 Requires tetrahedral arrangement and sp3 hybridization 
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Example 9.3 - Solution (Continued) 

 The central iodine atom is dsp3 hybridized 

 Three hybrid orbitals hold lone pairs 

 Two hybrid orbitals overlap with sp3 orbitals of the 
other two iodine atoms to form  bonds 
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d2sp3 Hybridization 

 Combination of two d, one s, and three p orbitals 

 Requires an octahedral arrangement of six 
equivalent hybrid orbitals 

 Six electron pairs around an atom are always 
arranged octahedrally 

 Require d2sp3 hybridization of the atom 
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Figure 9.23 - An Octahedral Set of d2sp3 Orbitals on a 
Sulfur Atom 
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Interactive Example 9.4 - The Localized Electron Model 
IV 

 How is the xenon atom in XeF4 hybridized? 
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Interactive Example 9.4 - Solution  

 XeF4 has six pairs of electrons around xenon that 
are arranged octahedrally to minimize repulsions 

 An octahedral set of six atomic orbitals is required to 
hold these electrons, and the xenon atom is d2sp3 
hybridized 
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Interactive Example 9.4 - Solution (Continued) 
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Problem Solving Strategy - Using the Localized Electron 
Model 

 Draw the Lewis structure(s) 

 Determine the arrangement of electron pairs 
using the VSEPR model 

 Specify the hybrid orbitals required to 
accommodate the electron pairs 
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Figure 9.24 - Relationship between the Number of Effective 
Pairs, Spatial Arrangement, and Hybrid Orbitals 



Section 9.1 
Hybridization and the Localized Electron Model 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Figure 9.24 - Relationship between the Number of Effective 
Pairs, Spatial Arrangement, and Hybrid Orbitals (Continued) 
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Interactive Example 9.5 - The Localized Electron Model 
V 

 For each of the following molecules or ions, 
predict the hybridization of each atom, and 
describe the molecular structure  

a. CO 

b. BF4
– 

c. XeF2 
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Interactive Example 9.5 - Solution (a) 

 The CO molecule has 10 valence electrons 

 

 Each atom has two effective pairs, which means that 
both are sp hybridized 

 The triple bond consists of: 

 One  bond produced by overlap of an sp orbital from each 
atom 

 Two  bonds produced by overlap of 2p orbitals from each 
atom 
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 The lone pairs are in sp orbitals 

 The molecule exhibits a linear arrangement of atoms 

Interactive Example 9.5 - Solution (a) (Continued) 
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Interactive Example 9.5 - Solution (b)  

 BF4
– ion has 32 valence electrons 

 The boron atom is surrounded by four pairs of 
electrons 

 Requires tetrahedral arrangement and sp3 hybridization of 
the boron atom 

 



Section 9.1 
Hybridization and the Localized Electron Model 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Interactive Example 9.5 - Solution (b) (Continued) 

 Each fluorine atom has four electron pairs 

 Assumed to be sp3 hybridized 

 Molecular structure - Tetrahedral 
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Interactive Example 9.5 - Solution (c) 

 XeF2 has 22 valence electrons 

 The xenon atom is surrounded by five electron pairs 

 Requires a trigonal bipyramidal arrangement 
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Interactive Example 9.5 - Solution (c) (Continued) 

 The lone pairs are placed in the plane where they are 
120 degrees apart 

 To accommodate five pairs at the vertices     
of a trigonal bipyramid requires that the        
xenon atom adopt a set of five dsp3 orbitals   

 Each fluorine atom has four electron           pairs and 
is assumed to be sp3 hybridized 

 The molecule has a linear arrangement of        
atoms 
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Limitations of the Localized Electron Model 

 Incorrectly assumes that electrons are localized 

 Concept of resonance must be added 

 Does not deal effectively with molecules 
containing unpaired electrons 

 Does not provide direct information about bond 
energies 
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Molecular Orbitals (MOs) 

 Have the same characteristics as atomic orbitals 

 Can hold two electrons with opposite spins 

 The square of the molecular orbital wave function 
indicates electron probability 
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Figure 9.25 - Formation of Molecular Orbitals 
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Properties of Molecular Orbitals 

 The electron probability of both molecular 
orbitals is centered along the line passing through 
the two nuclei 

 MO1 and MO2 are referred to as sigma (σ) molecular 
orbitals 

 In the molecule, only the molecular orbitals are 
available for occupation by electrons 
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Properties of Molecular Orbitals (Continued 1) 

 Bonding and antibonding 

 Bonding molecular orbital: Lower in energy than the 
atomic orbitals from which it is composed 

 Electrons in this orbital will favor bonding  

 Antibonding molecular orbital: Higher in energy than 
the atomic orbitals from which it is composed 

 Electrons in this orbital will favor the separated atoms 
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Figure 9.27 - Bonding and Antibonding Molecular 
Orbitals 
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Properties of Molecular Orbitals (Continued 2) 

 The MO model is physically reasonable  
 There is high probability of finding electrons between 

nuclei in bonding MOs 

 Electrons are outside the space between the nuclei in 
antibonding MOs 

 Labels on molecular orbitals indicate their shape, 
the parent atomic orbitals, and whether they are 
bonding or antibonding 
 Antibonding character is indicated by an asterisk 
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Properties of Molecular Orbitals (Continued 3) 

 Molecular electronic configuration can be written 
in the same way as atomic configurations 

 Each molecular orbital can hold two electrons 

 The spins should be opposite 

 Molecular orbitals are conserved 

 The number of MOs will be equal to the number of 
atomic orbitals used to construct them  
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Figure 9.28 - Molecular Energy-Level Diagram for the H2 
Molecule 
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Bond Order 

 Used to indicate bond strength 

 

 

 Bonds are perceived in terms of pairs of electrons 

 Larger the bond, greater the bond strength 
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number of bonding electrons – number of antibonding electrons
Bond order = 

2
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Bond Order (Continued) 

 Consider the H2
–

 ion 

 Contains two bonding electrons and one antibonding 
electron 
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2–1 1
Bond order =  = 

2 2
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Homonuclear Diatomic Molecules 

 Composed of two identical atoms 

 Only the valence orbitals of the atoms contribute 
significantly to the molecular orbitals of a 
particular molecule 
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Homonuclear Diatomic Molecules - Boron 

 Electron configuration - 1s22s22p1 

 B2 molecule is described based on how p atomic 
orbitals combine to form molecular orbitals 

 p orbitals occur in sets of               
three mutually             
perpendicular orbitals 

 Two pairs of p orbitals can             
overlap in a parallel              
fashion and one pair can             
overlap head-on 
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Homonuclear Diatomic Molecules - Boron (Continued 1) 

 Consider the molecular orbitals from the head-on 
overlap 
 Bonding orbital is formed by reversing the sign of the 

right orbital 
 Produces constructive interference 

 There is enhanced electron probability between the nuclei 

 Antibonding orbital is formed by the direct 
combination of the orbitals 
 Produces destructive inference 

 There is decreased electron probability between the nuclei 
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Homonuclear Diatomic Molecules - Boron (Continued 2) 

 MOs are σ molecular orbitals 

 Combination of parallel p orbitals with matched 
positive and negative phases results in constructive 
interference 

 Gives a bonding  orbital 

 If the signs of one orbital are reversed, an antibonding 
 orbital is formed  
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Homonuclear Diatomic Molecules - Boron (Continued 3) 

 Both p orbitals are pi () molecular orbitals  

 Pi () molecular orbitals: Electron probability lies above and 
below the line between the nuclei 

 2p - Bonding MO  

 2p* - Antibonding MO 

 

 

 

Copyright © Cengage Learning. All rights reserved 64 



Section 9.3 
Bonding in Homonuclear Diatomic Molecules 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Figure 9.34 - The Expected MO Energy-Level Diagram Resulting 
from the Combination of the 2p Orbitals on Two Boron Atoms 
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 B2 should be a stable 
molecule 

Figure 9.35 - The Expected Molecular Orbital Energy-
Level Diagram for the B2 Molecule 

4 - 2
Bond order = = 1

2
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Types of Magnetism in the Presence of a Magnetic Field 

 Paramagnetism: Substance is attracted into the 
inducing magnetic field 

 Associated with unpaired electrons 

 Diamagnetism: Substance is repelled from the 
inducing magnetic field 

 Associated with paired electrons 

 Substance that has both paired and unpaired 
electrons will exhibit a net paramagnetism 
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Figure 9.36 - Measuring Paramagnetism  
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 Diagram explains the observed        
paramagnetism of B2 

 When p–s mixing is allowed,               
the energies of the σ2p and π2p         
orbitals are reversed 

 Two electrons from the B 2p           
orbitals now occupy separate,                
degenerate π2p molecular orbitals                  
and have parallel spins 

Figure 9.37 - The Correct Molecular Orbital Energy-
Level Diagram for B2 
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Critical Thinking  

 What if 2p orbitals were lower in energy than  2p 
orbitals? 

 What would you expect the B2 molecular orbital 
energy-level diagram to look like (without considering 
p–s mixing)? 

 Compare the expected diagram to figures 9.34 and 9.35, and 
state the differences from each 
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Figure 9.38 - Molecular Orbital Summary of Second 
Row Diatomic Molecules 

Copyright © Cengage Learning. All rights reserved 71 



Section 9.3 
Bonding in Homonuclear Diatomic Molecules 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Key Points regarding Period 2 Diatomics 

 There are definite correlations between bond 
order, bond energy, and bond length 

 Bond order cannot be associated with a particular 
bond energy 

 The large bond energy associated with the N2 
molecule will have a triple bond 

 The O2 molecule is paramagnetic 
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Interactive Example 9.7 - The Molecular Orbital Model II 

 Use the molecular orbital model to predict the 
bond order and magnetism of each of the 
following molecules  

a. Ne2 

b. P2 
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Interactive Example 9.7 - Solution (a) 

 The valence orbitals for Ne are 2s and 2p 

 The Ne2 molecule has 16 valence electrons (8 from 
each atom) 
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Interactive Example 9.7 - Solution (a) (Continued) 

 Placing these electrons in the appropriate molecular 
orbitals produces the following diagram 

 

 

 

 

 

 The bond order is (8 – 8)/2 = 0 

 Ne2 does not exist 
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Interactive Example 9.7 - Solution (b) 

  P2 contains phosphorus atoms from the third row 
of the periodic table 

 Assume that the diatomic molecules of the Period 3 
elements can be treated in a way similar to that which 
has been used so far 

 Draw the MO diagram for P2 analogous to that for N2 

 The only change will be that the molecular orbitals will be 
formed from 3s and 3p atomic orbitals 
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Interactive Example 9.7 - Solution (b) (Continued) 

 The P2 molecule has 10 valence electrons (5 from each 
phosphorus atom) 

 

 

 

 

 

 Bond order = 3 

 The molecule is expected to be diamagnetic 
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Heteronuclear Diatomic Molecules 

 Heteronuclear: Different atoms  

 A special case involves molecules containing 
atoms adjacent to each other in the periodic table 

 MO diagram can be used for homonuclear molecules 
as atoms involved in such molecules are similar 
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Interactive Example 9.8 - The Molecular Orbital Model 
III 

 Use the molecular orbital model to predict the 
magnetism and bond order of the NO+ and CN– 
ions 
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Interactive Example 9.8 - Solution 

 The NO+ ion has 10 valance electrons (5 + 6 – 1) 

 The CN– ion also has 10 valance electrons (4 + 5 + 
1) 

 Both ions are diamagnetic 

 8 – 2
Bond order =  = 3

2
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Energy-Level Diagrams for Diatomic Molecules 

 When the two atoms of a diatomic molecule are 
very different, the energy-level diagram for 
homonuclear molecules cannot be used 

 Consider the hydrogen fluoride (HF) molecule 

 Electron configuration of hydrogen - 1s1 

 Electron configuration of fluorine - 1s22s22p5 

 Assume that fluorine uses only one of its 2p orbitals to 
bond to hydrogen 
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Figure 9.42 - Partial Molecular Orbital Energy-Level 
Diagram for HF 
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Energy-Level Diagrams for Diatomic Molecules (Continued) 

 The HF molecule should be stable as both electrons 
are lowered in energy relative to their energy in the 
free hydrogen and fluorine atoms 

 Electrons prefer to be closer to the fluorine atom 

 The electron pair is not shared equally 

 Fluorine has a slight excess of negative charge, and 
hydrogen is partially positive 
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Figure 9.43 - Electron Probability Distribution in the 
Bonding Molecular Orbital of the HF Molecule 
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Combining the Localized Electron and MO Models 

 The σ bonds in a molecule can be described as 
being localized 

 The π bonds must be treated as being delocalized 

 For molecules that require resonance: 

 The localized electron model can be used to describe 
the σ bonding  

 The MO model can be used to describe the π bonding 
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 All atoms in benzene are in the same       
plane 

 All the C—C bonds are known to be            
equivalent 

 To account for the six          
equivalent C—C bonds, the              
localized electron model            
must invoke resonance 

General Model - Benzene Molecule and its Resonance 
Structures 
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 Assumption - The σ bonds of carbon involve sp2 
orbitals 

 The bonds are centered in the           
plane of the molecule 

Combination of Models - Identifying σ bonds 
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Combination of Models - Identifying π bonds 

 Each carbon atom is sp2 hybridized 

 A p orbital perpendicular to the plane of the ring 
remains on each carbon atom 

 Used to form π molecular orbitals  

 The electrons in the resulting π molecular orbitals 
are delocalized above             
and below the plane         
of the ring 
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 Indicates the delocalized  bonding in the 
molecule 

Benzene Structure 
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Electron Spectroscopy 

 Uses 
 Determines the relative energies of electrons in 

individual atoms and molecules 

 Characterizes and tests molecular bonding theories 

 Helps in the study of the electron energy levels of 
atoms 

 Involves bombarding the sample with high-energy 
photons 
 Kinetic energies of the ejected electrons are measured 
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Electron Spectroscopy (Continued) 

 Formula used to determine energy of the electron 

 

 

 

 E - Energy of electron 

 hν - Energy of photons used 

 KE - Kinetic energy of the electron   

 =  – KEelectronE hν
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Figure 9.50 - The Idealized PES Spectrum of Phosphorus 


