

Chapter 3 *Table of Contents*

- (3.1) Counting by weighing
- (3.2) Atomic masses
- (3.3) The mole
- (3.4) Molar mass
- (3.5) Learning to solve problems
- (3.6) Percent composition of compounds
- (3.7) Determining the formula of a compound

Chapter 3 *Table of Contents*

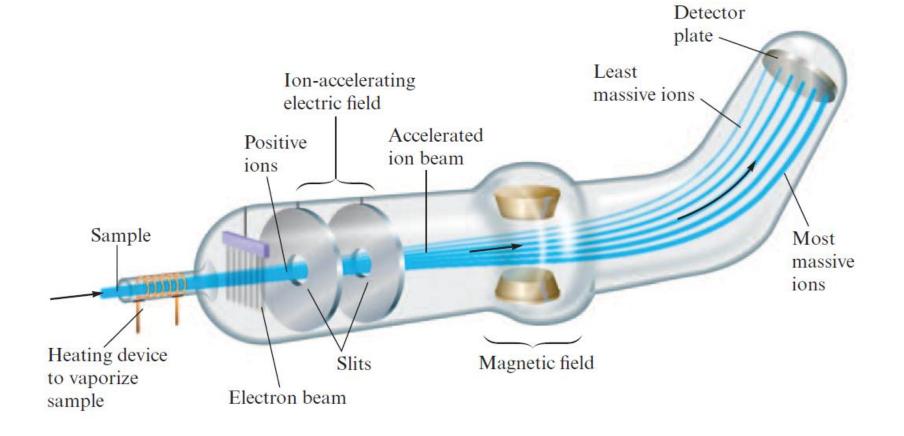
- (3.8) Chemical equations
- (3.9) Balancing chemical equations
- (3.10) Stoichiometric calculations: Amounts of reactants and products
- (3.11) The concept of limiting reactant

Section 3.1 *Counting by Weighing*

Chemical Stoichiometry

- The study of quantities of materials consumed and produced in chemical reactions
- Requires the understanding of the concept of relative atomic masses

Section 3.1 *Counting by Weighing*



An Overview of Stoichiometry

- The average mass of objects is required to count the objects by weighing
 - Objects behave as though they are all identical
- Chemists deal with samples of matter that contain huge numbers of atoms
 - Number of atoms in a sample can be determined by finding its mass

Figure 3.1 - Schematic Diagram of a Mass Spectrometer

Mass Spectrometer and the Mass of an Ion

- In a mass spectrometer, the amount of path deflection of an ion depends on its mass
 - Massive ions are deflected in the smallest amount
 - Causes separation of ions
- Position where the ions hit the detector plate provides accurate values of their relative masses

Average Atomic Mass of Elements

- Atomic mass or average mass of an element
- All elements occur in nature as mixtures of isotopes
 - Atomic masses of all elements are average values based on the isotopic composition of naturally occurring elements

Average Atomic Mass of Carbon

- Natural carbon is a mixture of three isotopes ¹²C, ¹³C, and ¹⁴C
 - Atomic mass of carbon is an average value of the three isotopes
- Natural carbon is composed of:
 - 98.89% ¹²C atoms (mass = 12 u)
 - 1.11% ¹³C atoms (mass = 13.003355 u)

Average Atomic Mass of Carbon (Continued)

The average atomic mass of natural carbon can be calculated as follows:

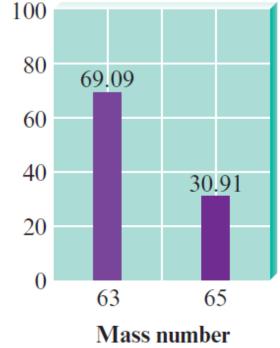
98.89% of 12 u + 1.11% of 13.0034 u = (0.9889)(12 u) + (0.0111)(13.0034 u) = 12.01 u

 For stoichiometric purposes, assume that carbon is composed of only one type of atom with a mass of 12.01

Uses of Mass Spectrometer

- Helps determine accurate mass values for individual atoms
- Ascertains the isotopic composition of naturally occurring elements

Exercise


- An element consists of:
 - 1.40% of an isotope with mass 203.973 u
 - 24.10% of an isotope with mass 205.9745 u
 - 22.10% of an isotope with mass 206.9759 u
 - 52.40% of an isotope with mass 207.9766 u
 - Calculate the average atomic mass, and identify the element

Mass = 207.2 u The element is lead (Pb)

Example 3.1 - The Average Mass of an Element

- When a sample of natural copper is vaporized and injected into a mass spectrometer, the results 100shown in the graph are obtained Relative number of atoms
 - Use these data to compute the average mass of natural copper
 - The mass values for ⁶³Cu and ⁶⁵Cu are 62.93 u and 64.93 u, respectively

Example 3.1 - Solution

- Where are we going?
 - To calculate the average mass of natural copper
- What do we know?
 - ⁶³Cu mass = 62.93 u
 - ⁶⁵Cu mass = 64.93 u
- How do we get there?
 - As shown by the graph, of every 100 atoms of natural copper, 69.09 are ⁶³Cu and 30.91 are ⁶⁵Cu

Example 3.1 - Solution (Continued 1)

Thus, the mass of 100 atoms of natural copper is

$$(69.09 \text{ atoms})\left(62.93 \frac{u}{\text{atom}}\right) + (30.91 \text{ atoms})\left(64.93 \frac{u}{\text{atom}}\right) = 6355 \text{ u}$$

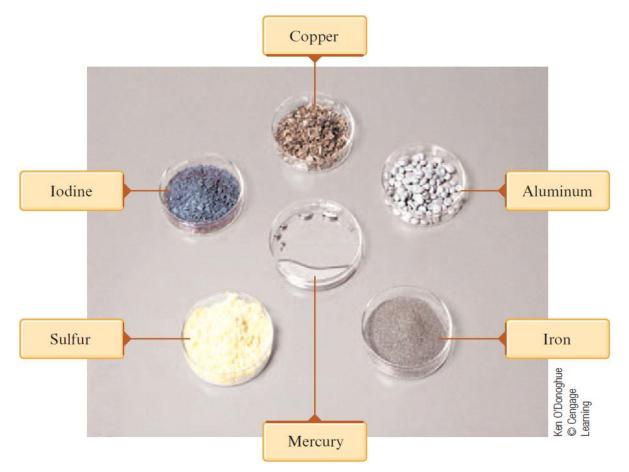
The average mass of a copper atom is

$$\frac{6355 \text{ u}}{100 \text{ atoms}} = 63.55 \text{ u/atom}$$

 This mass value is used in doing calculations involving the reactions of copper

Example 3.1 - Solution (Continued 2)

- Reality check
 - The answer of 63.55 u is between the masses of the atoms that make up natural copper
 - This makes sense
 - The answer could not be smaller than 62.93 u or larger than 64.93 u



Mole (mol)

- Number of carbon atoms in exactly 12 grams of pure ¹²C
 - Determined to be 6.02214 × 10²³ using the technique of mass spectrometry
 - Avogadro's number: 1 mole of something consists of 6.022 × 10²³ units of that substance

Figure 3.4 - One Mole Samples of Several Elements

Critical Thinking

- What if you were offered \$1 million to count from 1 to 6 × 10²³ at a rate of one number each second?
 - Determine your hourly wage
 - Would you do it? Could you do it?

Using the Mole in Chemical Calculations

- Avogadro's number is defined as the number of atoms in exactly 12 g of ¹²C
 - 1 mol C = 6.022 × 10²³ atoms
- 12.01-g sample of natural carbon contains
 6.022 × 10²³ atoms

Using the Mole in Chemical Calculations (Continued)

- Ratio of masses of both samples 12 g/12.01 g
- Ratio of masses of individual components 12 u/12.01 u
 - Therefore, both samples contain the same number of atoms

Table 3.1 - Comparison of 1 Mole Samples of VariousElements

Element	Number of Atoms Present	Mass of Sample (g)
Aluminum	6.022×10^{23}	26.98
Copper	$6.022 imes 10^{23}$	63.55
Iron	6.022×10^{23}	55.85
Sulfur	6.022×10^{23}	32.07
Iodine	6.022×10^{23}	126.9
Mercury	6.022×10^{23}	200.6

Defining the Mole

- Sample of a natural element whose mass equals the element's atomic mass expressed in grams contains 1 mole of atoms
- Relationship between the atomic mass unit and the gram:

$$(6.022 \times 10^{23} \text{ atoms}) \left(\frac{12 \text{ u}}{\text{atom}}\right) = 12 \text{ g}$$

 6.022×10^{23} u = 1 g - Exact number

Critical Thinking

- What if you discovered Avogadro's number was not 6.02 × 10²³ but 3.01 × 10²³?
 - Would this affect the relative masses given on the periodic table?
 - If so, how?
 - If not, why not?

Interactive Example 3.5 - Calculating the Number of Moles and Mass

- Cobalt (Co) is a metal that is added to steel to improve its resistance to corrosion
 - Calculate both the number of moles in a sample of cobalt containing 5.00 × 10²⁰ atoms and the mass of the sample

Interactive Example 3.5 - Solution

- Where are we going?
 - To calculate the number of moles and the mass of a sample of Co
- What do we know?
 - Sample contains 5.00 \times 10²⁰ atoms of Co

Interactive Example 3.5 - Solution (Continued 1)

- How do we get there?
 - Note that the sample of 5.00 × 10²⁰ atoms of cobalt is less than 1 mole (6.022 × 10²³ atoms) of cobalt
 - What fraction of a mole it represents can be determined as follows:

$$5.00 \times 10^{20}$$
 atoms $\text{Co} \times \frac{1 \text{ mol Co}}{6.022 \times 10^{23}}$ atoms Co
= $8.30 \times 10^{-4} \text{ mol Co}$

Interactive Example 3.5 - Solution (Continued 2)

 Since the mass of 1 mole of cobalt atoms is 58.93 g, the mass of 5.00 × 10²³ atoms can be determined as follows:

$$8.30 \times 10^{-4} \text{ mol Co} \times \frac{58.93 \text{ g Co}}{1 \text{ mol Co}} = 4.89 \times 10^{-2} \text{ g Co}$$

Interactive Example 3.5 - Solution (Continued 3)

- Reality check
 - The sample contains 5 × 10²⁰ atoms, which is approximately 1/1000 of a mole
 - The sample should have a mass of about (1/1000)(58.93) ≅ 0.06
 - The answer of ~ 0.05 makes sense

Exercise

- Diamond is a natural form of pure carbon
 - What number of atoms of carbon are in a 1.00-carat diamond (1.00 carat = 0.200 g)?

1.00 × 10²² atoms C

Molar Mass - An Introduction

- Mass in grams of one mole of a substance
 - Obtained by finding the sum of masses of a compound's constituent atoms
- Example Mass of 1 mole of methane (CH₄) can be computed by summing the masses of C and H
 - Mass of 1 mol of C = 12.01 g
 - Mass of 4 mol of H = 4 × 1.008 g = 4.03 g
 - Therefore, mass of 1 mol CH₄ = 16.04 g

Interactive Example 3.7 - Calculating Molar Mass II

- Calcium carbonate (CaCO₃), also called calcite, is the principal mineral found in limestone, marble, chalk, pearls, and the shells of marine animals such as clams
 - a. Calculate the molar mass of calcium carbonate
 - b. A certain sample of calcium carbonate contains 4.86 moles
 - What is the mass in grams of this sample? What is the mass of the CO₃²⁻ ions present?

Interactive Example 3.7 - Solution (a)

- Calcium carbonate is an ionic compound composed of Ca²⁺ and CO₃²⁻ ions
 - In 1 mole of calcium carbonate, there are 1 mole of Ca²⁺ ions and 1 mole of CO₃²⁻ ions
 - Molar mass is calculated by summing the masses of the components

Interactive Example 3.7 - Solution (a) (Continued)

1 Ca ²⁺ :	1 × 40.08 g	=	40.08 g
1 CO ₃ ^{2–} :			
1 C:	1 × 12.01 g	=	12.01 g
3 O:	3 × 16.00 g	=	48.00 g
Mass of 1 mol CaCO ₃		=	100.09 g

- Thus, the mass of 1 mole of CaCO₃ (1 mole of Ca²⁺ plus 1 mole of CO₃²⁻) is 100.09 g
 - This is the molar mass

Interactive Example 3.7 - Solution (b)

- The mass of 1 mole of CaCO₃ is 100.09 g
 - The sample contains nearly 5 moles, or close to 500 g
 - The exact amount is determined as follows:

4.86 mol CaCO₃ ×
$$\frac{100.09 \text{ g CaCO}_3}{1 \text{ mol CaCO}_3}$$
 = 486 g CaCO₃

Interactive Example 3.7 - Solution (b) (Continued 1)

- To find the mass of carbonate ions (CO₃²⁻) present in this sample, realize that 4.86 moles of CaCO₃ contains 4.86 moles of Ca²⁺ ions and 4.86 moles of CO₃²⁻ ions
- The mass of 1 mole of CO₃²⁻ ions is calculated as follows:

1 C:	1 × 12.01	=	12.01 g
3 0:	3 × 16.00	=	48.00 g
Mass of	1 mol CO ₃ ^{2–}	=	60.01 g

Interactive Example 3.7 - Solution (b) (Continued 2)

Thus, the mass of 4.86 moles of CO₃²⁻ ions is

4.86 mol·
$$\mathrm{CO}_{3}^{2^{-}} \times \frac{60.01 \text{ g } \mathrm{CO}_{3}^{2^{-}}}{1 \text{ mol·} \mathrm{CO}_{3}^{2^{-}}} = 292 \text{ g } \mathrm{CO}_{3}^{2^{-}}$$

Interactive Example 3.8 - Molar Mass and Numbers of Molecules

- Isopentyl acetate (C₇H₁₄O₂) is the compound responsible for the scent of bananas
 - Interestingly, bees release about 1 µg (1 × 10⁻⁶ g) of this compound when they sting
 - The resulting scent attracts other bees to join the attack
 - How many molecules of isopentyl acetate are released in a typical bee sting?
 - How many atoms of carbon are present?

Interactive Example 3.8 - Solution

- Where are we going?
 - To calculate the number of molecules of isopentyl acetate and the number of carbon atoms in a bee sting
- What do we know?
 - Mass of isopentyl acetate in a typical bee sting is 1 microgram = 1 × 10⁻⁶ g

Interactive Example 3.8 - Solution (Continued 1)

- How do we get there?
 - Since we are given a mass of isopentyl acetate and want to find the number of molecules, we must first compute the molar mass of C₇H₁₄O₂

7 mol C × 12.01
$$\frac{g}{mol}$$
 = 84.07 g C
14 mol H × 1.008 $\frac{g}{mol}$ = 14.11 g H

Interactive Example 3.8 - Solution (Continued 2)

2
$$mol O \times 16.00 \frac{g}{mol} = 32.00 g O$$

Molar mass of $C_7 H_{14} O_2 = 84.07 \text{ g C} + 14.11 \text{ g H} + 32.00 \text{ g O}$ = 130.18 g

- This means that 1 mole of isopentyl acetate (6.022 × 10²³ molecules) has a mass of 130.18 g
- To find the number of molecules released in a sting, we must first determine the number of moles of isopentyl acetate in 1 × 10⁻⁶ g

Interactive Example 3.8 - Solution (Continued 3)

$$1 \times 10^{-6} \underline{g} \underline{C_7} \underline{H_{14}} \underline{O_2} \times \frac{1 \text{ mol } C_7 \underline{H_{14}} \underline{O_2}}{130.18 \underline{g} \underline{C_7} \underline{H_{14}} \underline{O_2}} = 8 \times 10^{-9} \text{ mol } C_7 \underline{H_{14}} \underline{O_2}$$

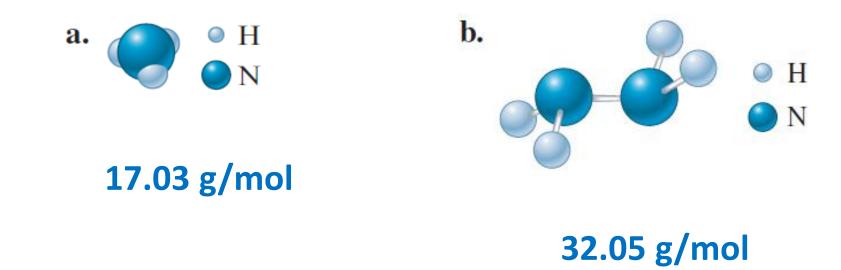
 Since 1 mole is 6.022 × 10²³ units, we can determine the number of molecules

$$8 \times 10^{-9} \text{ mol } \text{C}_7 \text{H}_{14} \text{O}_2 \times \frac{6.022 \times 10^{23} \text{ molecules}}{1 \text{ mol } \text{C}_7 \text{H}_{14} \text{O}_2} = 5 \times 10^{15} \text{ molecules}$$

Interactive Example 3.8 - Solution (Continued 4)

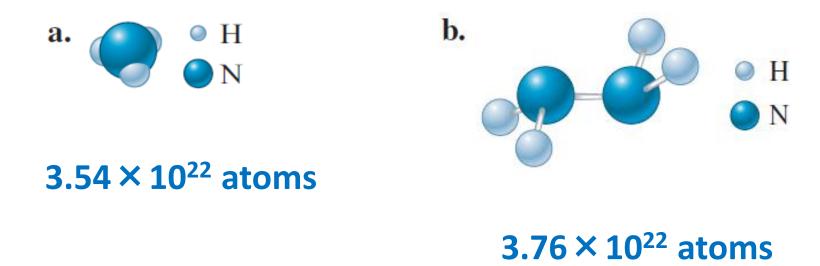
 To determine the number of carbon atoms present, we must multiply the number of molecules by 7, since each molecule of isopentyl acetate contains seven carbon atoms

 5×10^{15} molecules $\times \frac{7 \text{ carbon atoms}}{\text{molecule}} = 4 \times 10^{16}$ carbon atoms


Interactive Example 3.8 - Solution (Continued 5)

- Note
 - In keeping with our practice of always showing the correct number of significant figures, we have rounded after each step
 - However, if extra digits are carried throughout this problem, the final answer rounds to 3 × 10¹⁶

Exercise


Calculate the molar mass of the following substances:

Exercise (Continued)

 What number of atoms of nitrogen are present in 1.00 g of each of the following compounds?

Section 3.5 *Learning to Solve Problems*

Conceptual Problem Solving

- Method that will help solve problems in a flexible and creative manner
 - Based on the understanding of fundamental concepts of chemistry
- Goal of the text
 - To help one solve new problems on their own

Section 3.5 Learning to Solve Problems

Methods of Approaching a Problem

- Pigeonhole method
 - Emphasizes memorization
 - Involves labeling the problem
 - Slotting the problem into the apt pigeonhole
 - Provides steps that one can memorize and store in an appropriate slot for each different problem
 - Challenge
 - Requirement of a new pigeonhole for every new problem

Methods of Approaching a Problem (Continued)

- Conceptual problem solving
 - Helps understand the reality of the situation
 - Involves looking for a solution within the problem
 - Each problem is assumed as a new one
 - The problem should guide you as you solve it
 - Involves asking a series of questions while proceeding with the problem
 - One uses his/her knowledge of fundamental chemistry principles to answer the questions

Conceptual Problem Solving - The Approach

- Where are we going?
 - Read the problem and decide on the final goal
 - Sort through the given facts and focus on the key words
 - Draw a diagram of the problem
 - This stage involves a simple, visual analysis of the problem

Conceptual Problem Solving - The Approach (Continued)

- How do we get there?
 - Work backward from the final goal to decide where to start
- Reality check
 - Check if the answer makes sense
 - Check whether the answer is reasonable

Methods of Describing a Compound's Composition

- In terms of the numbers of the compound's atoms
- In terms of mass percent (weight percent)

mass % = $\frac{\text{mass of an element in 1 mol of the compound}}{\text{mass of 1 mol of the compound}} \times 100\%$

Interactive Example 3.9 - Calculating Mass Percent

- Carvone is a substance that occurs in two forms having different arrangements of the atoms but the same molecular formula (C₁₀H₁₄O) and mass
 - One type of carvone gives caraway seeds their characteristic smell, and the other type is responsible for the smell of spearmint oil
 - Compute the mass percent of each element in carvone

Interactive Example 3.9 - Solution

- Where are we going?
 - To find the mass percent of each element in carvone
- What do we know?
 - Molecular formula is C₁₀H₁₄O
- What information do we need to find the mass percent?
 - Mass of each element (we'll use 1 mole of carvone)
 - Molar mass of carvone

Interactive Example 3.9 - Solution (Continued 1)

- How do we get there?
 - Determine the mass of each element in 1 mole of C₁₀H₁₄O

Mass of C in 1 mol = 10 mol × $12.01\frac{g}{mol} = 120.1g$

Mass of H in 1 mol = 14 mol
$$\times$$
 1.008 $\frac{g}{mol}$ = 14.11g

Mass of O in 1 mol = 1 mol × 16.00
$$\frac{g}{mol}$$
 = 16.00 g

Interactive Example 3.9 - Solution (Continued 2)

What is the molar mass of C₁₀H₁₄O?

120.1 g + 14.11 g + 16.00 g = 150.2 g

$$C_{10}$$
 + H_{14} + O = $C_{10}H_{14}O$

- What is the mass percent of each element?
 - Find the fraction of the total mass contributed by each element and convert it to a percentage

Interactive Example 3.9 - Solution (Continued 3)

Mass percent of C =
$$\frac{120.1 \text{ g C}}{150.2 \text{ g C}_{10} \text{H}_{14} \text{O}} \times 100\% = 79.96\%$$

Mass percent of H = $\frac{14.11 \text{ g H}}{150.2 \text{ g C}_{10}\text{H}_{14}\text{O}} \times 100\% = 9.394\%$

Mass percent of O =
$$\frac{16.00 \text{ g C}}{150.2 \text{ g C}_{10} \text{H}_{14} \text{O}} \times 100\% = 10.65\%$$

Reality check

The percentages add up to 100%

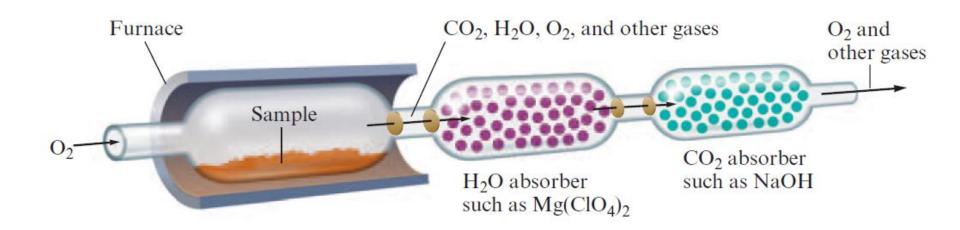
Exercise

- Calculate the percent composition by mass of the following compounds that are important starting materials for synthetic polymers:
 - a. $C_3H_4O_2$ (acrylic acid, from which acrylic plastics are made)

50.00% C, 5.595% H, and 44.41% O

b. $C_4H_6O_2$ (methyl acrylate, from which Plexiglas is made)

55.80% C, 7.025% H, and 37.18% O



Determining the Formula of a Compound

- Weigh the sample of the compound
- Decompose the sample into its constituent elements or react it with oxygen
- Combustion device
 - Used to analyze substances for hydrogen and carbon
 - Helps determine the mass percent of each element in a compound

Section 3.7 Determining the Formula of a Compound

Figure 3.5 - A Schematic Diagram of a Combustion Device

Empirical Formula

- Any molecule that can be represented as (CH₅N)_n has the empirical formula CH₅N
 - n Integer
 - Molecular formula: Exact formula of the molecules present in a substance
 - Requires the knowledge of the molar mass

Section 3.7 Determining the Formula of a Compound

Problem-Solving Strategy - Empirical Formula Determination

- Mass percentage gives the number of grams of a particular element per 100 g of compound
 - Therefore, base the calculation on 100 g of compound
 - Each percent will then represent the mass in grams of that element
- Determine the number of moles of each element present in 100 g of compound
 - Use the atomic masses of the elements present

Section 3.7 Determining the Formula of a Compound

Problem-Solving Strategy - Empirical Formula Determination (Continued)

- Divide each value of the number of moles by the smallest of the values
 - If each resulting number is a whole number (after appropriate rounding), these numbers represent the subscripts of the elements in the empirical formula
 - If the numbers obtained are not whole numbers, multiply each number by an integer so that the results are all whole numbers

Critical Thinking

- One part of the problem-solving strategy for empirical formula determination is to base the calculation on 100 g of compound
 - What if you chose a mass other than 100 g?
 - Would this work?
 - What if you chose to base the calculation on 100 moles of compound?
 - Would this work?

Section 3.7 Determining the Formula of a Compound

Problem-Solving Strategy - Determining Molecular Formula from Empirical Formula

- Obtain the empirical formula
- Compute the mass corresponding to the empirical formula
- Calculate the ratio

Molar mass Empirical formula mass

Problem-Solving Strategy - Determining Molecular Formula from Empirical Formula (Continued)

- Number of empirical formula units in one molecule is represented by the integer from the previous step
 - Molecular formula results when the empirical formula subscripts are multiplied by this integer
 - This procedure is summarized as follows:

Molecular formula = empirical formula \times

molar mass

empirical formula mass

Section 3.7 Determining the Formula of a Compound

Interactive Example 3.11 - Determining Empirical and Molecular Formulas II

- A white powder is analyzed and found to contain 43.64% phosphorus and 56.36% oxygen by mass
 - The compound has a molar mass of 283.88 g/mol
 - What are the compound's empirical and molecular formulas?

Interactive Example 3.11 - Solution

- Where are we going?
 - To find the empirical and molecular formulas for the given compound
- What do we know?
 - Percent of each element
 - Molar mass of the compound is 283.88 g/mol

Interactive Example 3.11 - Solution (Continued 1)

- What information do we need to find the empirical formula?
 - Mass of each element in 100.00 g of compound
 - Moles of each element
- How do we get there?
 - What is the mass of each element in 100.00 g of compound?

Mass of P = 43.64 g Mass of O = 56.36 g

Section 3.7 Determining the Formula of a Compound

Interactive Example 3.11 - Solution (Continued 2)

What are the moles of each element in 100.00 g of compound?

43.64 g/P ×
$$\frac{1 \mod P}{30.97 g/P}$$
 = 1.409 mol P
56.36 g/O × $\frac{1 \mod O}{16.00 g/O}$ = 3.523 mol O

Interactive Example 3.11 - Solution (Continued 3)

- What is the empirical formula for the compound?
 - Dividing each mole value by the smaller one gives:

$$\frac{1.409}{1.409} = 1$$
 P and $\frac{3.523}{1.409} = 2.5$ O

- This yields the formula PO_{2.5}
- Since compounds must contain whole numbers of atoms, the empirical formula should contain only whole numbers
- To obtain the simplest set of whole numbers, we multiply both numbers by 2 to give the empirical formula P₂O₅

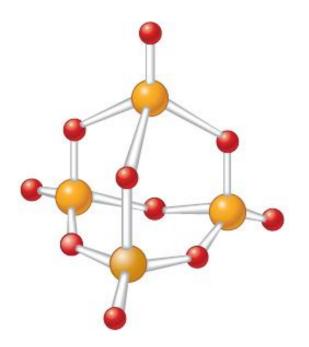
Interactive Example 3.11 - Solution (Continued 4)

- What is the molecular formula for the compound?
 - Compare the empirical formula mass to the molar mass

Empirical formula mass = 141.94 g/mol

Given molar mass = 283.88 g/mol

 $\frac{\text{Molar mass}}{\text{Empirical formula mass}} = \frac{283.88}{141.94} = 2$


• The molecular formula is $(P_2O_5)_2$, or P_4O_{10}

Section 3.7 Determining the Formula of a Compound

Interactive Example 3.11 - Solution (Continued 5)

 Note - The structural formula for this interesting compound is given below

Exercise

- A compound contains 47.08% carbon, 6.59% hydrogen, and 46.33% chlorine by mass
 - Molar mass of the compound is 153 g/mol
 - What are the empirical and molecular formulas of the compound?

Empirical formula - C₃H₅Cl Molecular formula - C₆H₁₀Cl₂

Problem-Solving Strategy - Determining Molecular Formula from Mass Percent and Molar Mass

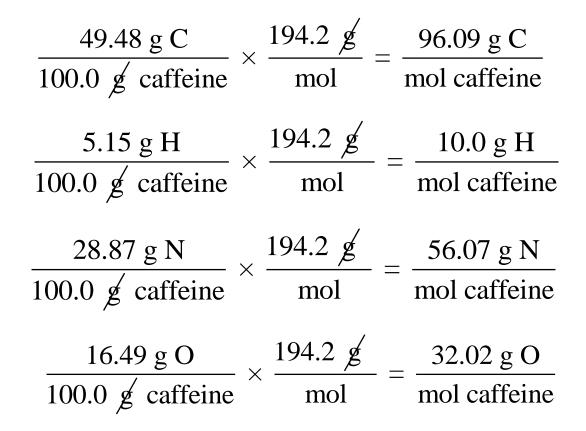
- Use the mass percentages and the molar mass to determine the mass of each element present in 1 mole of compound
- Compute the number of moles of each element present in 1 mole of compound
 - Integers in this step represent the subscripts in the molecular formula

Section 3.7 Determining the Formula of a Compound

Interactive Example 3.12 - Determining a Molecular Formula

- Caffeine, a stimulant found in coffee, tea, and chocolate, contains 49.48% carbon, 5.15% hydrogen, 28.87% nitrogen, and 16.49% oxygen by mass and has a molar mass of 194.2 g/mol
 - Determine the molecular formula of caffeine

Interactive Example 3.12 - Solution


- Where are we going?
 - To find the molecular formula for caffeine
- What do we know?
 - Percent of each element
 - 49.48% C
 - 28.87% N
 - 5.15% H
 - 16.49% O
 - Molar mass of caffeine is 194.2 g/mol

Interactive Example 3.12 - Solution (Continued 1)

- What information do we need to find the molecular formula?
 - Mass of each element (in 1 mole of caffeine)
 - Mole of each element (in 1 mole of caffeine)
- How do we get there?
 - What is the mass of each element in 1 mole (194.2 g) of caffeine?

Interactive Example 3.12 - Solution (Continued 2)

Copyright ©2017 Cengage Learning. All Rights Reserved.

Section 3.7 Determining the Formula of a Compound

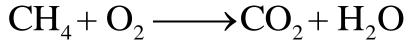
Interactive Example 3.12 - Solution (Continued 3)

What are the moles of each element in 1 mole of caffeine?

Carbon:
$$\frac{96.09 \text{ g/C}}{\text{mol caffeine}} \times \frac{1 \text{ mol C}}{12.01 \text{ g/C}} = \frac{8.001 \text{ mol C}}{\text{mol caffeine}}$$
Hydrogen:
$$\frac{10.0 \text{ g/H}}{\text{mol caffeine}} \times \frac{1 \text{ mol H}}{1.008 \text{ g/H}} = \frac{9.92 \text{ mol H}}{\text{mol caffeine}}$$

Section 3.7 Determining the Formula of a Compound

Interactive Example 3.12 - Solution (Continued 4)


Nitrogen:
$$\frac{56.07 \text{ g/N}}{\text{mol caffeine}} \times \frac{1 \text{ mol N}}{14.01 \text{ g/N}} = \frac{4.002 \text{ mol N}}{\text{mol caffeine}}$$
$$Oxygen: \frac{32.02 \text{ g/O}}{\text{mol caffeine}} \times \frac{1 \text{ mol O}}{16.00 \text{ g/O}} = \frac{2.001 \text{ mol O}}{\text{mol caffeine}}$$

 Rounding the numbers to integers gives the molecular formula for caffeine: C₈H₁₀N₄O₂ Section 3.8 *Chemical Equations*

Chemical Reactions

- Chemical change involves the reorganization of atoms in one or more substances
 - Atoms are neither created nor destroyed
- Represented by a chemical equation
 - Reactants: Presented on the left side of an arrow
 - Products: Presented on the right side of the arrow

Reactants

Products

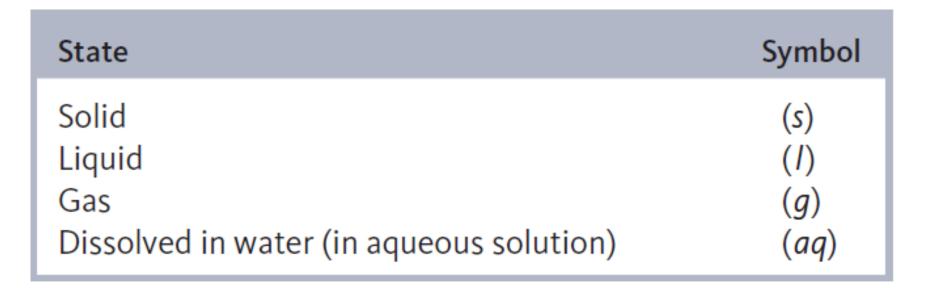
Section 3.8 *Chemical Equations*

Balancing a Chemical Equation

 All atoms present in the reactants must be accounted for in the products that are formed

> Unbalanced equation: $CH_4 + O_2 \longrightarrow CO_2 + H_2O$ Balanced equation: $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$

Reactants	Products
1 C	1 C
4 H	4 H
4 O	4 O


Information Provided by Chemical Equations

- Nature of the reactants and products
- Relative numbers of reactants and products
 - Indicated by coefficients in a balanced equation
- Physical states of reactants and products
- Mass remains constant
 - Atoms are conserved in a chemical reaction

Section 3.8 *Chemical Equations*

Representing Physical States in a Chemical Equation

Section 3.9 Balancing Chemical Equations

Things to Remember

- Refrain from considering an unbalanced equation
- Experimental observation determines the identities of the reactants and products of a reaction
- Formulas of compounds must never be changed while balancing a chemical equation
 - Do not change subscripts, and do not add or subtract atoms from a formula

Section 3.9 Balancing Chemical Equations

Critical Thinking

- What if a friend was balancing chemical equations by changing the values of the subscripts instead of using the coefficients?
 - How would you explain to your friend that this was the wrong thing to do?

Problem-Solving Strategy - Writing and Balancing the Equation for a Chemical Reaction

- 1. Determine what reaction is occurring
 - Determine the reactants, the products, and the physical states involved
- 2. Write the unbalanced equation that summarizes the reaction

Problem-Solving Strategy - Writing and Balancing the Equation for a Chemical Reaction (Continued)

- 3. Balance the equation by inspection, starting with the most complicated molecule(s)
 - Determine what coefficients are necessary
 - The same number of each type of atom needs to appear on both reactant and product sides
 - Do not change the formulas of any of the reactants or products

Section 3.9 Balancing Chemical Equations

Critical Thinking

- One part of the problem-solving strategy for balancing chemical equations is "starting with the most complicated molecule"
 - What if you started with a different molecule?
 - Could you still eventually balance the chemical equation?
 - How would this approach be different from the suggested technique?

Interactive Example 3.14 - Balancing a Chemical Equation II

- At 1000° C, ammonia gas, NH₃(g), reacts with oxygen gas to form gaseous nitric oxide, NO(g), and water vapor
 - This reaction is the first step in the commercial production of nitric acid by the Ostwald process
 - Balance the equation for this reaction

Section 3.9 Balancing Chemical Equations

Interactive Example 3.14 - Solution

- Steps 1 and 2
 - The unbalanced equation for the reaction is

$$\operatorname{NH}_3(g) + \operatorname{O}_2(g) \rightarrow \operatorname{NO}(g) + \operatorname{H}_2\operatorname{O}(g)$$

- Step 3
 - Since all the molecules in this equation are of about equal complexity, where we start in balancing it is rather arbitrary

Interactive Example 3.14 - Solution (Continued 1)

- Let's begin by balancing the hydrogen
 - A coefficient of 2 for NH₃ and a coefficient of 3 for H₂O give six atoms of hydrogen on both sides

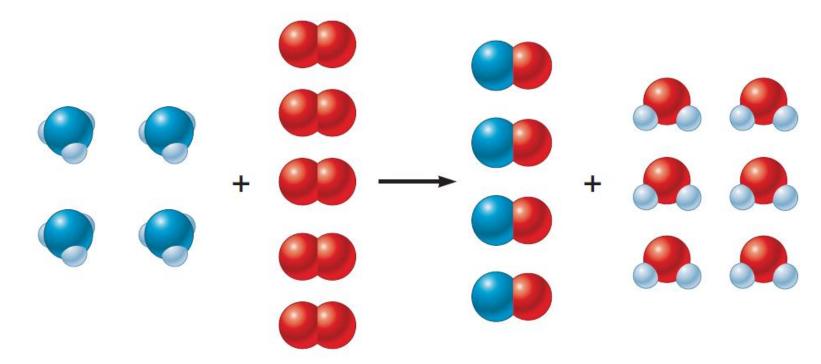
$$2\mathrm{NH}_{3}(g) + \mathrm{O}_{2}(g) \rightarrow \mathrm{NO}(g) + 3\mathrm{H}_{2}\mathrm{O}(g)$$

 The nitrogen can be balanced with a coefficient of 2 for NO

$$2\mathrm{NH}_{3}(g) + \mathrm{O}_{2}(g) \rightarrow 2\mathrm{NO}(g) + 3\mathrm{H}_{2}\mathrm{O}(g)$$

Interactive Example 3.14 - Solution (Continued 2)

- Finally, note that there are two atoms of oxygen on the left and five on the right
 - The oxygen can be balanced with a coefficient of $\frac{5}{2}$ for O₂ 2NH₃(g) + $\frac{5}{2}$ O₂(g) \rightarrow 2NO(g) + 3H₂O(g)
- Usual custom is to have whole-number coefficients
 - We simply multiply the entire equation by 2


 $4\mathrm{NH}_3(g) + 5\mathrm{O}_2(g) \rightarrow 4\mathrm{NO}(g) + 6\mathrm{H}_2\mathrm{O}(g)$

 Reality check - There are 4 N, 12 H, and 10 O on both sides, so the equation is balanced Section 3.9 Balancing Chemical Equations

Interactive Example 3.14 - Solution (Continued 3)

Visual representation of the balanced reaction

Section 3.9 Balancing Chemical Equations

Exercise

- Balance the following equations:
 - a. $\operatorname{Ca}(\operatorname{OH})_2(aq) + \operatorname{H}_3\operatorname{PO}_4(aq) \to \operatorname{H}_2\operatorname{O}(l) + \operatorname{Ca}_3(\operatorname{PO}_4)_2(s)$ $\operatorname{3Ca}(\operatorname{OH})_2(aq) + \operatorname{2H}_3\operatorname{PO}_4(aq) \to \operatorname{6H}_2\operatorname{O}(l) + \operatorname{Ca}_3(\operatorname{PO}_4)_2(s)$
 - b. $\operatorname{AgNO}_3(aq) + \operatorname{H}_2\operatorname{SO}_4(aq) \rightarrow \operatorname{Ag}_2\operatorname{SO}_4(s) + \operatorname{HNO}_3(aq)$ $2\operatorname{AgNO}_3(aq) + \operatorname{H}_2\operatorname{SO}_4(aq) \rightarrow \operatorname{Ag}_2\operatorname{SO}_4(s) + 2\operatorname{HNO}_3(aq)$

Problem-Solving Strategy - Calculating Masses of Reactants and Products in Reactions

- 1. Balance the equation for the reaction
- 2. Convert the known mass of the reactant or product to moles of that substance
- 3. Use the balanced equation to set up the appropriate mole ratios

Problem-Solving Strategy - Calculating Masses of Reactants and Products in Reactions (Continued)

- Use the appropriate mole ratios to calculate the number of moles of the desired reactant or product
- Convert from moles back to grams if required by the problem

Critical Thinking

- Your lab partner has made the observation that you always take the mass of chemicals in lab, but then you use mole ratios to balance the equation
 - "Why not use the masses in the equation?" your partner asks
 - What if your lab partner decided to balance equations by using masses as coefficients?
 - Is this even possible?
 - Why or why not?

Interactive Example 3.15 - Chemical Stoichiometry I

- Solid lithium hydroxide is used in space vehicles to remove exhaled carbon dioxide from the living environment by forming solid lithium carbonate and liquid water
 - What mass of gaseous carbon dioxide can be absorbed by 1.00 kg of lithium hydroxide?

Interactive Example 3.15 - Solution

- Where are we going?
 - To find the mass of CO₂ absorbed by 1.00 kg LiOH
- What do we know?
 - Chemical reaction $LiOH(s) + CO_2(g) \rightarrow Li_2CO_3(s) + H_2O(l)$
 - 1.00 kg LiOH
- What information do we need to find the mass of CO₂?
 - Balanced equation for the reaction

Interactive Example 3.15 - Solution (Continued 1)

- How do we get there?
 - 1. What is the balanced equation?

 $2\text{LiOH}(s) + \text{CO}_2(g) \rightarrow \text{Li}_2\text{CO}_3(s) + \text{H}_2\text{O}(l)$

- 2. What are the moles of LiOH?
 - To find the moles of LiOH, we need to know the molar mass

Molar mass of LiOH = 6.941 + 16.00 + 1.008 = 23.95 g/mol

Interactive Example 3.15 - Solution (Continued 2)

Now we use the molar mass to find the moles of LiOH

$$1.00 \text{ kgLiOH} \times \frac{1000 \text{ gLiOH}}{1 \text{ kgLiOH}} \times \frac{1 \text{ mol LiOH}}{23.95 \text{ gLiOH}} = 41.8 \text{ mol LiOH}$$

3. What is the mole ratio between CO₂ and LiOH in the balanced equation?

 $\frac{1 \text{ mol CO}_2}{2 \text{ mol LiOH}}$

Interactive Example 3.15 - Solution (Continued 3)

4. What are the moles of CO_2 ?

41.8 mol·LiOH ×
$$\frac{1 \text{ mol CO}_2}{2 \text{ mol·LiOH}} = 20.9 \text{ mol CO}_2$$

5. What is the mass of CO_2 formed from 1.00 kg LiOH?

$$20.9 \text{ mol} \text{-} \text{eO}_2 \times \frac{44.0 \text{ g} \text{CO}_2}{1 \text{ mol} \text{-} \text{eO}_2} = 9.20 \times 10^2 \text{ g} \text{CO}_2$$

Thus, 920 g of $CO_2(g)$ will be absorbed by 1.00 kg of LiOH(s)

Exercise

- Over the years, the thermite reaction has been used for welding railroad rails, in incendiary bombs, and to ignite solid-fuel rocket motors
 - The reaction is as follows:

 $\operatorname{Fe}_{2}O_{3}(s) + 2\operatorname{Al}(s) \rightarrow 2\operatorname{Fe}(l) + \operatorname{Al}_{2}O_{3}(s)$

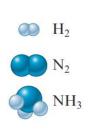
What masses of iron(III) oxide and aluminum must be used to produce 15.0 g iron? What is the maximum mass of aluminum oxide that could be produced?

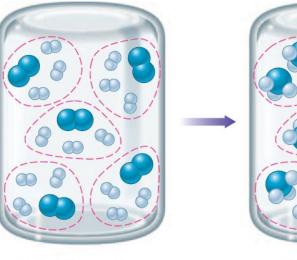
Exercise (Continued)

What masses of iron(III) oxide and aluminum must be used to produce 15.0 g iron?

> Mass of iron (III) oxide = 21.5 g Mass of Aluminum = 7.26 g

What is the maximum mass of aluminum oxide that could be produced?

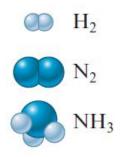

13.7 g Al₂O₃

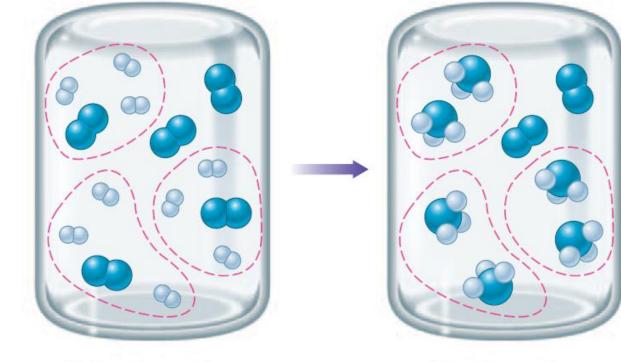

Section 3.11 *The Concept of Limiting Reactant*

Stoichiometric Mixture

 Contains relative amounts of reactants that match the numbers in the balanced equation

Before the reaction


After the reaction


 $3H_2(g) + N_2(g) \rightarrow 2NH_3(g)$

Section 3.11 *The Concept of Limiting Reactant*

When Hydrogen is the Limiting Reactant

Before the reaction

After the reaction

Limiting Reactants

- To determine the amount of product that will be formed, ascertain the reactant that is limiting
 - Limiting reactant: Runs out first
 - Limits the amounts of products that can be formed
- Some mixtures can be stoichiometric
 - All reactants run out at the same time
 - Requires determining which reactant is limiting

Determination of the Limiting Reactant Using Reactant Quantities

- Compare the moles of reactants to ascertain which runs out first
 - Use moles of molecules instead of individual molecules
- Method
 - Use the balanced equation to determine the limiting reactant

Determination of the Limiting Reactant Using Reactant Quantities (Continued)

- Determine the amount of limiting reactant formed
 - Use the amount of limiting reactant formed to compute the quantity of the product
- Alternative method
 - Compare the mole ratio of substances that are required by the balanced equation with the mole ratio of actual reactants present

Determination of Limiting Reactant Using Quantities of Products Formed

- Use the amounts of products that can be formed by completely consuming each reactant
 - Reactant that produces the smallest amount of product must run out first
 - This is the limiting reactant

Interactive Example 3.17 - Stoichiometry: Limiting Reactant

- Nitrogen gas can be prepared by passing gaseous ammonia over solid copper(II) oxide at high temperatures
 - The other products of the reaction are solid copper and water vapor
 - If a sample containing 18.1 g of NH₃ is reacted with 90.4 g of CuO, which is the limiting reactant?
 - How many grams of N₂ will be formed?

Interactive Example 3.17 - Solution

- Where are we going?
 - To find the limiting reactant
 - To find the mass of N₂ produced
- What do we know?
 - The chemical reaction

 $\mathrm{NH}_{3}(g) + \mathrm{CuO}(s) \rightarrow \mathrm{N}_{2}(g) + \mathrm{Cu}(s) + \mathrm{H}_{2}\mathrm{O}(g)$

18.1 g NH₃ and 90.4 g CuO

Interactive Example 3.17 - Solution (Continued 1)

- What information do we need?
 - Balanced equation for the reaction
 - Moles of NH₃
 - Moles of CuO
- How do we get there?
 - To find the limiting reactant, determine the balanced equation

 $2\mathrm{NH}_{3}(g) + 3\mathrm{CuO}(s) \rightarrow \mathrm{N}_{2}(g) + 3\mathrm{Cu}(s) + 3\mathrm{H}_{2}\mathrm{O}(g)$

Interactive Example 3.17 - Solution (Continued 2)

- What are the moles of NH₃ and CuO?
 - To find the moles, we need to know the molar masses

NH₃ 17.03 g/mol CuO 79.55 g/mol

$$18.1 \text{ g NH}_{3} \times \frac{1 \text{ mol NH}_{3}}{17.03 \text{ g NH}_{3}} = 1.06 \text{ mol NH}_{3}$$

$$90.4 \text{ g CuO} \times \frac{1 \text{ mol CuO}}{79.55 \text{ g CuO}} = 1.14 \text{ mol CuO}$$

Interactive Example 3.17 - Solution (Continued 3)

- A. First we will determine the limiting reactant by comparing the moles of reactants to see which one is consumed first
 - What is the mole ratio between NH₃ and CuO in the balanced equation?

 $\frac{3 \text{ mol CuO}}{2 \text{ mol NH}_3}$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 3.17 - Solution (Continued 4)

How many moles of CuO are required to react with 1.06 moles of NH₃?

$$1.06 \text{ mol NH}_3 \times \frac{3 \text{ mol CuO}}{2 \text{ mol NH}_3} = 1.59 \text{ mol CuO}$$

- Thus 1.59 moles of CuO are required to react with 1.06 moles of NH₃
- Since only 1.14 moles of CuO are actually present, the amount of CuO is limiting; CuO will run out before NH₃ does

Interactive Example 3.17 - Solution (Continued 5)

 We can verify this conclusion by comparing the mole ratio of CuO and NH₃ required by the balanced equation

$$\frac{\text{mol CuO}}{\text{mol NH}_3} (\text{required}) = \frac{3}{2} = 1.5$$

With the mole ratio actually present

$$\frac{\text{mol CuO}}{\text{mol NH}_3} (\text{actual}) = \frac{1.14}{1.06} = 1.08$$

 Since the actual ratio is too small (less than 1.5), CuO is the limiting reactant

Interactive Example 3.17 - Solution (Continued 6)

B. Alternatively we can determine the limiting reactant by computing the moles of N_2 that would be formed by complete consumption of NH_3 and CuO

1.06 mol NH₃ ×
$$\frac{1 \text{ mol N}_2}{2 \text{ mol NH}_3}$$
 = 0.530 mol N₂
1.14 mol CuO × $\frac{1 \text{ mol N}_2}{3 \text{ mol CuO}}$ = 0.380 mol N₂

Interactive Example 3.17 - Solution (Continued 7)

- As before, we see that the CuO is limiting since it produces the smaller amount of N₂
- To find the mass of N₂ produced, determine the moles of N₂ formed
 - Because CuO is the limiting reactant, we must use the amount of CuO to calculate the amount of N₂ formed

Interactive Example 3.17 - Solution (Continued 8)

What is the mole ratio between N₂ and CuO in the balanced equation?

 $\frac{1 \text{ mol } N_2}{3 \text{ mol } \text{CuO}}$

What are the moles of N₂?

1.14 mol·CuO ×
$$\frac{1 \text{ mol } N_2}{3 \text{ mol·CuO}} = 0.380 \text{ mol } N_2$$

Interactive Example 3.17 - Solution (Continued 9)

- What mass of N₂ is produced?
 - Using the molar mass of N₂ (28.02 g/mol), we can calculate the mass of N₂ produced

$$0.380 \text{ mol } \text{N}_2 \times \frac{28.02 \text{ g } \text{N}_2}{1 \text{ mol } \text{N}_2} = 10.6 \text{ g } \text{N}_2$$

The Concept of Yield

- Theoretical yield: Amount of product formed after the limiting reactant is entirely consumed
 - Amount of product predicted is rarely obtained due to side reactions and other complications
- Percent yield: Actual yield of product

 $\frac{\text{Actual yield}}{\text{Theoretical yield}} \times 100\% = \text{percent yield}$

Interactive Example 3.18 - Calculating Percent Yield

- Methanol (CH₃OH), also called methyl alcohol, is the simplest alcohol
 - It is used as a fuel in race cars and is a potential replacement for gasoline
 - Methanol can be manufactured by combining gaseous carbon monoxide and hydrogen

Interactive Example 3.18 - Calculating Percent Yield (Continued)

- Suppose 68.5 kg CO(g) is reacted with 8.60 kg
 H₂(g)
 - Calculate the theoretical yield of methanol
 - If 3.57 × 10⁴ g CH₃OH is actually produced, what is the percent yield of methanol?

Interactive Example 3.18 - Solution

- Where are we going?
 - To calculate the theoretical yield of methanol
 - To calculate the percent yield of methanol
- What do we know?
 - The chemical reaction

 $H_2(g) + CO(g) \rightarrow CH_3OH(l)$

- 68.5 kg CO(g) and 8.60 kg H₂ (g)
- 3.57×10^4 g CH₃OH is produced

Interactive Example 3.18 - Solution (Continued 1)

- What information do we need?
 - Balanced equation for the reaction
 - Moles of H₂
 - Moles of CO
 - Which reactant is limiting
 - Amount of CH₃OH produced

Interactive Example 3.18 - Solution (Continued 2)

- How do we get there?
 - To find the limiting reactant, balance the chemical equation

$$2\mathrm{H}_{2}(g) + \mathrm{CO}(g) \rightarrow \mathrm{CH}_{3}\mathrm{OH}(l)$$

- What are the moles of H₂ and CO?
 - To find the moles, we need to know the molar masses

H_2	2.016 g/mol
CO	28.02 g/mol

Interactive Example 3.18 - Solution (Continued 3)

$$68.5 \text{ kg-CO} \times \frac{1000 \text{ g-CO}}{1 \text{ kg-CO}} \times \frac{1 \text{ mol CO}}{28.02 \text{ g-CO}} = 2.44 \times 10^3 \text{ mol CO}$$

8.60 kg H₂ ×
$$\frac{1000 \text{ g H}_2}{1 \text{ kg H}_2}$$
 × $\frac{1 \text{ mol H}_2}{2.016 \text{ g H}_2}$ = 4.27 ×10³ mol H₂

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 3.18 - Solution (Continued 4)

- A. Determination of limiting reactant using reactant quantities
 - What is the mole ratio between H₂ and CO in the balanced equation?

 $\frac{2 \text{ mol } \text{H}_2}{1 \text{ mol CO}}$

How does the actual mole ratio compare to the stoichiometric ratio?

Interactive Example 3.18 - Solution (Continued 5)

 To determine which reactant is limiting, we compare the mole ratio of H₂ and CO required by the balanced equation with the actual mole ratio

$$\frac{\text{mol } \text{H}_2}{\text{mol } \text{CO}} (\text{required}) = \frac{2}{1} = 2$$

$$\frac{\text{mol H}_2}{\text{mol CO}} (\text{actual}) = \frac{4.27 \times 10^3}{2.44 \times 10^3} = 1.75$$

 Since the actual mole ratio of H₂ to CO is smaller than the required ratio, H₂ is limiting

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 3.18 - Solution (Continued 6)

- B. Determination of limiting reactant using quantities of products formed
 - We can also determine the limiting reactant by calculating the amounts of CH₃OH formed by complete consumption of CO(g) and H₁(g)

$$2.44 \times 10^{3} \text{ mol} \text{CO} \times \frac{1 \text{ mol} \text{CH}_{3}\text{OH}}{1 \text{ mol} \text{CO}} = 2.44 \times 10^{3} \text{ mol} \text{CH}_{3}\text{OH}$$

Interactive Example 3.18 - Solution (Continued 7)

$$4.27 \times 10^{3} \text{ mol} \text{H}_{2} \times \frac{1 \text{ mol} \text{ CH}_{3}\text{OH}}{2 \text{ mol} \text{H}_{2}} = 2.14 \times 10^{3} \text{ mol} \text{ CH}_{3}\text{OH}$$

Since complete consumption of the H₂ produces the smaller amount of CH₃OH, the H₂ is the limiting reactant as we determined above

Interactive Example 3.18 - Solution (Continued 8)

- To calculate the theoretical yield of methanol
 - What are the moles of CH₃OH formed?
 - We must use the amount of H₂ and the mole ratio between H₂ and CH₃OH to determine the maximum amount of methanol that can be produced:

$$4.27 \times 10^3 \text{ mol} \text{H}_2 \times \frac{1 \text{ mol} \text{ CH}_3 \text{OH}}{2 \text{ mol} \text{H}_2} = 2.14 \times 10^3 \text{ mol} \text{ CH}_3 \text{OH}$$

Interactive Example 3.18 - Solution (Continued 9)

What is the theoretical yield of CH₃OH in grams?

$$2.14 \times 10^3 \text{ mol} \text{CH}_3\text{OH} \times \frac{32.04 \text{ g} \text{CH}_3\text{OH}}{1 \text{ mol} \text{CH}_3\text{OH}} = 6.86 \times 10^4 \text{ g} \text{CH}_3\text{OH}$$

• Thus, from the amount of reactants given, the maximum amount of CH_3OH that can be formed is 6.86 \times 10⁴ g

Interactive Example 3.18 - Solution (Continued 10)

What is the percent yield of CH₃OH?

Percent yield = $\frac{\text{Actual yield (grams)}}{\text{Theoretical yield (grams)}} \times 100$ = $\frac{3.57 \times 10^4 \text{ g CH}_3\text{OH}}{6.86 \times 10^4 \text{ g CH}_3\text{OH}} \times 100\%$ = 52.0%

Copyright ©2017 Cengage Learning. All Rights Reserved.

Problem-Solving Strategy

- Solving a stoichiometry problem involving masses of reactants and products
 - 1. Write and balance the equation for the reaction
 - 2. Convert the known masses of substances to moles
 - 3. Determine which reactant is limiting and its amount
 - Use this amount and the appropriate mole ratios to compute the number of moles of the desired product
 - 4. Convert from moles to grams, using the molar mass