
Chapter 21 

Transition Metals and  

Coordination Chemistry 

Copyright ©2017 Cengage Learning. All Rights Reserved. 



Chapter 21 
Table of Contents  

Copyright ©2017 Cengage Learning. All Rights Reserved. 

 (21.1) The transition metals: A survey 

 (21.2) The first-row transition metals 

 (21.3) Coordination compounds 

 (21.4) Isomerism 

 (21.5) Bonding in complex ions: The localized  
  electron model 

 (21.6) The crystal field model 

 (21.7) The biological importance of coordination  
  complexes 

 (21.8) Metallurgy and iron and steel production 



Section 21.1 
The Transition Metals: A Survey 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Transition Metals - Properties 

 Show great similarities within a given period and  
a given vertical group 

 Attributed to the fact that inner electrons are the last 
electrons added  

 d-block transition metals receive d electrons  

 Lanthanides and actinides receive f electrons 

 Inner electrons cannot participate easily in bonding  
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Figure 21.1 - Transition Elements on the Periodic Table 
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Transition Metals - Properties (Continued 1) 

 Behave like typical metals  

 Possess metallic luster and high electrical and thermal 
conductivities 

 Display variations in physical properties 

 Melting points 

 Tungsten - 3400°C  

 Mercury - 25°C 

 Iron and titanium are hard and strong, whereas 
copper and gold are relatively soft  
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Transition Metals - Properties (Continued 2) 

 Display variations in chemical reactivity 

 Example - Some transition metals react readily to form 
oxides 

 The oxides of chromium, nickel, and cobalt adhere to the 
metallic surface and protect the metal from further 
oxidation 

 The oxide of iron scales off, exposing new metal to corrosion  
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Forming Ionic Compounds - Trends 

 More than one oxidation state is often found 

 Cations are often complex ions  

 Complex ions: Species where the transition metal ion 
is surrounded by a certain number of ligands 

 Ligands - Molecules or ions that behave as Lewis bases 

 Example  

 [Co(NH3)6]Cl3 contains Co(NH3)6
3+ cations and Cl– anions  
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A Complex Ion - Co(NH3)6
3+ 
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Forming Ionic Compounds - Trends (Continued) 

 Compounds are colored  

 Transition metal ion in the complex ion can absorb 
visible light of specific wavelengths 

 Compounds are paramagnetic 

 Contain unpaired electrons  
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First-Row Transition Metals - Electron Configurations  

 3d orbitals begin to fill after the 4s orbital is 
complete  

 Exceptions  

 Chromium (Cr) - [Ar]4s13d5 

 Copper - [Ar]4s13d10 

 A set of orbitals with the same energy is said to be 
degenerate  
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First-Row Transition Metals - Electron Configurations 
(Continued) 

 First-row transition metal ions do not have 4s 
electrons 

 Energy of the 3d orbitals is significantly less than that 
of the 4s orbital 

 Example  

 Configuration of neutral titanium - [Ar]4s23d2 

 Configuration of Ti3+ - [Ar]3d1 
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Oxidation States 

 Transition metals can form a variety of ions by 
losing one or more electrons  

 Note  

 For the first five elements, the maximum possible 
oxidation state is related to the loss of all the 4s and 
3d electrons  
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Ionization Energy  

 Increases gradually from left to right across the 
period  

 Third ionization energy increases faster than the first 
ionization energy  

 Proves that there is significant decline in the energy of the 
3d orbitals while going across the period  
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Figure 21.2 - Plots of the First and Third Ionization 
Energies for the First-Row Transition Metals 
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Standard Reduction Potentials 

 Half-reaction of a metal that acts as a reducing 
agent  
 

 This is the reverse of the conventional half-reactions  

 The metal with most positive potential is the best 
reducing agent  

M M en n  
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Table 21.3 - Relative Reducing Abilities of the First-Row 
Transition Metals in Aqueous Solution 
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Standard Reduction Potentials (Continued) 

 
 

 For this reaction, E°= 0 

 All metals except Cu can reduce H+ ions to H2 (g) in 1 M 
aqueous solution of strong acid  

 
 

 The reducing abilities of the first-row transition metals 
decrease going from left to right across the period 

 Exceptions - Chromium and zinc 

+

22H + 2e H 

       2+

2M  + 2H H  + Ms aq g aq 
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Figure 21.3 - Atomic Radii of the 3d, 4d, and 5d 
Transition Series 
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4d and 5d Transition Series - Trends 

 4d and 5d metals are similar in size 

 Lanthanide contraction: The decrease in the 
atomic radii of the lanthanide series elements, 
going from left to right in the periodic table 

 Caused by increase in nuclear charge 

 Offsets the normal increase in size due to going from 
one principal quantum level to another  
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4d and 5d Transition Series - Trends (Continued 1) 

 Differences in size between 4d and 5d transition 
elements in a group increase gradually from left 
to right  

 Useful properties of 4d and 5d metals  

 Zirconium and zirconium oxide are highly resistant to 
high temperatures 

 Used along with niobium and molybdenum alloys in space 
vehicle parts  
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4d and 5d Transition Series - Trends (Continued 2) 

 Tantalum displays high resistance to the attack of 
body fluids 

 Used for replacement of bones 

 Platinum group metals 

 Used as catalysts for industrial processes 
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Scandium 

 Rare element  

 Exists in compounds in the +3 oxidation state  

 Chemistry strongly resembles that of the 
lanthanides 

 Most of its compounds are colorless and diamagnetic 

 Scandium metal is prepared by electrolysis of 
molten ScCl3 
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Titanium  

 Low density and high strength 

 Used in jet engines and to make pipes, pumps, and 
reaction vessels in the chemical industry  

 Titanium(IV) oxide, TiO2 

 Highly opaque substance 

 Used as white pigment in paper, paint, and plastics  

 Main ores - Rutile and ilmenite  

 Exists in compounds in the +4 oxidation state  
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Titanium (Continued)  

 Titanium(III) compounds 

 Produced by reduction of the +4 state 

 Exists as the purple Ti(H2O)6
3+ ion in aqueous solution  

 Slowly oxidized to titanium(IV) by air 

 Titanium(II) 

 Not stable in aqueous solution  

 Exists in solid state in compounds such as TiO and the 
dihalides of general formula TiX2 
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Vanadium 

 Used in alloys with titanium and iron 

 Hard and corrosion resistant 

 Vanadium(V) oxide (V2O5) 

 Useful industrial catalyst for the production of sulfuric 
acid 

 Pure form can be extracted from the electrolytic 
reduction of fused salts  

 Principal oxidation state: +5  
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Table 21.4 - Oxidation States and Species for Vanadium 
in Aqueous Solution 
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Chromium 

 Rare element and an important industrial 
material  

 Chief ore - Chromite (FeCr2O4) 

 Reduced by carbon to produce ferrochrome, which 
can be added to iron for making steel  

          2 4FeCr O  + 4C Fe  + 2Cr  + 4COs s s s g

Ferrochrome 
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Chromium (Continued 1) 

 Chromium metal  

 Hard and brittle  

 Maintains a bright surface by creating a tough invisible 
oxide coating  

 Forms compounds in which Cr has the oxidation 
state +2, +3, or +6 

 Chromous ion (Cr2+) is a powerful reducing agent 
in aqueous solution  
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Chromium (Continued 2) 

 Chromium (VI) species are excellent oxidizing 
agents in acidic solution  

 Reduction of dichromate ion (Cr2O7
2–) to the Cr3+ ion 

 Oxidizing ability of dichromate ion is pH-dependent 

 

 Exists as the chromate ion in a basic solution  

 Less powerful as an oxidizing agent  

 

       2 3

2 7 2Cr O  + 14H  + 6e  2Cr  + 7H O         E = 1.33 V    aq aq aq l

         2

2 4 2 3
Cr O  + 4H O  + 3e  Cr OH  + 5OH       E = 0.13 V    aq l s aq
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Chromium (Continued 3) 

 Red chromium(VI) oxide dissolves in H2O 

 Product is a strongly acidic, red-orange solution 

 

 When made basic, the solution turns yellow 

 Chromate salts can be obtained 

 Cleaning solution - Mixture of chromium(VI) oxide and 
concentrated H2SO4  

 Powerful oxidizing medium that can remove organic 
materials from analytical glassware  

 

 

       2

3 2 2 72CrO  + H O 2H  + Cr Os l aq aq 
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Figure 21.4 - Structures of the Chromium(VI) Anions 

Cr2O7
2– exists in acidic solution CrO4

2– exists in basic solution 
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Manganese 

 Used for producing hard steel, which is used for 
rock crushers, bank vaults, and armor plates  

 Source - Manganese nodules  

 Found on the ocean floor in the form of spherical 
rocks  

 Rocks contain mixtures of manganese, iron oxides, and small 
traces of cobalt, nickel, and copper 

 Exists in all oxidation states from +2 to +7 
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Table 21.6 - Some Compounds of Manganese in its 
most Common Oxidation States 
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Iron  

 Most abundant heavy metal 

 Appears white and lustrous 

 Highly reactive toward oxidizing agents   

 Example - Iron rapidly oxidizes in moist air to form rust 

 Chemistry of iron involves its +2 and +3 oxidation 
states  



Section 21.2 
The First-Row Transition Metals 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Table 21.7 - Typical Compounds of Iron 
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Cobalt 

 Rare element 

 Ores - Smaltite (CoAs2) and cobaltite (CoAsS) 

 Appears bluish white 

 Used in alloys such as stainless steel and stellite 

 Chemistry of cobalt involves its +2 and +3 
oxidation states  

 Forms a wide variety of coordination compounds  



Section 21.2 
The First-Row Transition Metals 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Table 21.8 - Typical Compounds of Cobalt 



Section 21.2 
The First-Row Transition Metals 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Nickel  

 Found in ores in combination with arsenic, 
antimony, and sulfur 

 Silvery white metal  

 Has high electric and thermal conductivity 

 Resistant to corrosion 

 Used for plating active metals and in the production of 
alloys such as steel  

 Exists in compounds in the +2 oxidation state  
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Table 21.9 - Typical Compounds of Nickel 
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Copper 

 Widely abundant in natural ores that contain 
sulfides, arsenides, chlorides, and carbonates  

 Valued for its high electrical conductivity and its 
resistance to corrosion 

 Used for plumbing and electrical applications 

 Constituent in alloys such as brass, sterling silver, 
and gold (18-karat) 
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Copper (Continued) 

 Corrodes when exposed to air  

 Produces a green patina that consists of basic copper 
sulfate  

 

 

 

 Chemistry of copper principally involves the +2 
oxidation state 

 Can be toxic if consumed in large amounts 

           2 2 2 3 44
3Cu  + 2H O  + SO  + 2O Cu OH SOs l g g s

Basic copper sulfate 
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Table 21.11 - Typical Compounds of Copper 
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Zinc 

 Refined from sphalerite (ZnS), which occurs with 
galena (PbS) 

 White and lustrous 

 Highly active metal 

 Excellent reducing agent and has the tendency to 
tarnish rapidly  

 Used for galvanizing steel  

 Forms colorless salts in the +2 oxidation state  



Section 21.3 
Coordination Compounds 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Coordination Compound 

 Consists of a complex ion and counterions 

 Complex ion - Transition metal ion with its attached 
ligands  

 Counterions: Anions or cations that are required to 
produce a compound with no net charge 

 Example - [Co(NH3)5Cl]Cl2 

 Brackets indicate the complex ion composition  
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Alfred Werner 

 Proposed that transition metal ions have two 
types of valence 

 Primary valence - Ability to form ionic bonds with 
oppositely charged ions  

 Currently termed as the oxidation state  

 Secondary valence - Ability to bind to ligands (Lewis 
bases) and form complex ions  

 Currently termed as the coordination number 
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Coordination Number 

 Number of bonds formed by metal ions to ligands 
in complex ions  

 Varies from two to eight based on the size, charge, 
and electron configuration of the transition metal ion 

 Metal ions can have more than one coordination 
number  
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Table 21.12 - Typical Coordination Numbers for Some 
Common Metal Ions 
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Typical Geometries of Coordination Numbers 

 Linear 

 Produced by two ligands  

 Tetrahedral or square planar  

 Produced by four ligands  

 Octahedral  

 Produced by six ligands  
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Ligands 

 Neutral molecule or ion having a lone electron 
pair that is used to form a bond to a metal ion 

 Coordinate covalent bond: Metal–ligand bond 
resulting from the interaction between a Lewis base 
(the ligand) and a Lewis acid (the metal ion) 
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Types of Ligands 

 Monodentate (unidentate) ligand  

 Can form one bond to a metal ion 

 Chelating ligand (chelate) 

 Has more than one atom with a lone 
pair that can bond to a metal ion  
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Ammonia (NH3) is a 
unidentate ligand 
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Chelating Ligands 

 Bidentate ligand 

 Can form two bonds to a metal ion 

 Polydentate ligand  

 Can form more than two bonds to a          
metal ion 

 Hexadentate ligand 

 Can form as many as six bonds to a metal ion 

 Example - Ethylenediaminetetraacetate (EDTA)  

 

 

Bidentate 
ligand ethylenediamine 



Section 21.3 
Coordination Compounds 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Figure 21.7 - The Coordination of EDTA with a 2+ Metal 
Ion 
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Rules for Naming Coordination Compounds 

 Ionic compound 

 Cation is named before the anion 

 Complex ion 

 Ligands are named before the metal ion 

 Ligands 

 An ‘o’ is added to the root name of the anion 

 For a neutral ligand, the name of the molecule is used 

 Exception - H2O, NH3, CO, and NO 
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Rules for Naming Coordination Compounds (Continued 1) 

 Number of simple ligands are denoted by prefixes 
mono-, di-, tri-, tetra-, penta-, and hexa- 

 Prefixes bis-, tris-, tetrakis-, and so on are used for 
more complicated ligands or ones that already contain 
di-, tri-, and so on 

 The oxidation state of the central metal ion is 
designated by a Roman numeral in parentheses  
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Rules for Naming Coordination Compounds (Continued 2) 

 When more than one type of ligand is present, 
they are named alphabetically 

 Prefixes have no effect on the order  

 If the complex ion has a negative charge, the 
suffix -ate is added to the name of the metal 
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Interactive Example 21.1 - Naming Coordination 
Compounds I 

 Give the systematic name for the following 
coordination compound: 

 [Fe(en)2(NO2)2]2SO4 
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Interactive Example 21.1 - Solution 

 First determine the oxidation state of the iron by 
looking at the other charged species 

 Four NO2
– ions and one SO4

2– ion 

 The ethylenediamine is neutral 

 Thus, the two iron ions must carry a total positive charge of 
6 to balance the six negative charges, which means that 
each iron has a +3 oxidation state and is designated as 
iron(III) 
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Interactive Example 21.1 - Solution (Continued) 

 Since the name ethylenediamine already contains di, 
we use bis- instead of di- to indicate the two en 
ligands 

 The name for NO2
– as a ligand is nitro, and the prefix 

di- indicates the presence of two NO2
– ligands 

 Since the anion is sulfate, the compound’s name is: 
 

Bis(ethylenediamine)dinitroiron(III) sulfate 

Cation  Anion 
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Exercise  

 Give formulas for the following: 

a. Potassium tetrachlorocobaltate(II) 

 

b. Aquatricarbonylplatinum(II) bromide 

 

c. Triamminechloroethylenediaminechromium(III) 
iodide 

K2[CoCl4] 

[Pt(H2O)(CO)3]Br2 

[Cr(NH3)3Cl(H2NCH2CH2NH2)]I2 
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Concept of Isomerism 

 Isomers: Two or more species with the same 
formula but different properties  

 Types 
 Structural isomerism: Isomers contain the same 

atoms  
 Only one or more bonds differ  

 Stereoisomerism: All bonds in the isomers are the 
same  
 Spatial arrangements of the atoms are different  
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Figure 21.8 - Some Classes of Isomers 



Section 21.4 
Isomerism 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Structural Isomerism 

 Coordination isomerism: Composition of the 
complex ion varies 

 Linkage isomerism: Composition of the complex 
ion is the same, but the point of attachment of at 
least one of the ligands differs 
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Stereoisomerism 

 Geometrical (cis–trans) isomerism: Atoms or 
groups of atoms can assume different positions 
around a rigid ring or bond 

 Cis isomer: Molecules are next to each other 

 Trans isomer: Molecules are across from each other 
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Figure 21.11 - Cis and Trans Isomers of the Complex 
Compound [Co(NH3)4Cl2]+ 
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Stereoisomerism (Continued) 

 Optical isomerism: Isomers have opposite effects 
on plane-polarized light 

 When light is emitted from a source, the oscillating 
electric fields of the photons in the beam are oriented 
randomly 

 Plane-polarized light constitutes photons with electric fields 
that oscillate in a single plane  
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Figure 21.12 - Unpolarized Light and Plane-Polarized 
Light 
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Figure 21.13 - Rotation of the Plane of Polarized Light 
by an Optically Active Substance 
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Optical Activity 

 Exhibited by molecules that have 
nonsuperimposable mirror images 

 Considered to be chiral 

 Enantiomers: Isomers that are 
nonsuperimposable mirror images of each other 

 Rotate plane-polarized light in opposite directions 

 Hence, they are optical isomers  
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Figure 21.15 - The Human Hand, a Nonsuperimposable 
Mirror Image 
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Enantiomers 

 Dextrorotatory (d) 

 Isomer that rotates the plane of light to the right  

 Levorotatory (l) 

 Isomer that rotates the plane of light to the left  

 Racemic mixture  

 Solution containing an equal mixture of d and l forms 

 Does not rotate the plane of the polarized light as the 
opposite effects cancel each other 
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Geometric Isomers and Optical Isomers  

 Geometric isomers are not 
necessarily optical isomers  

 Example - The trans isomer of 
[Co(en)2Cl2]+ and its mirror 
image are identical 

 Since the isomer is 
superimposable on its mirror 
image, it does not exhibit optical 
isomerism and is not chiral  
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Geometric Isomers and Optical Isomers (Continued) 

 Example - The cis isomer of 
[Co(en)2Cl2]+ and its mirror 
image are not 
superimposable  

 Thus, they are a pair of optical 
isomers 

 Isomer II has the same 
structure as the mirror image 
of isomer I 



Section 21.4 
Isomerism 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Example 21.3 - Geometrical and Optical Isomerism 

 Does the complex ion [Co(NH3)Br(en)2]2+ exhibit 
geometrical isomerism?  

 Does it exhibit optical isomerism? 
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Example 21.3 - Solution 

 The complex ion exhibits geometrical isomerism 
because the ethylenediamine ligands can be 
across from or next to each other 
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Example 21.3 - Solution (Continued) 

 The cis isomer of the complex ion also exhibits optical 
isomerism because its mirror images cannot be turned 
in any way to make them superimposable  

 

 

 
 

 Thus, these mirror-image isomers of the cis complex are 
shown to be enantiomers that will rotate plane-polarized 
light in opposite directions 
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Key Points 

1. The VSEPR model does not help determine the 
structure of complex ions 

 It is safe to assume that: 

 A complex ion with a coordination number of 6 will have 
octahedral arrangement of ligands 

 Complexes with two ligands will be linear 

 Complex ions with a coordination number of 4 can be 
either tetrahedral or square planar 

 No reliable way exists to predict which will occur 
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2. Interaction between a metal ion and a ligand can 
be viewed as a Lewis acid–base reaction  

 The ligand donates a lone pair of electrons to an 
empty orbital of the metal ion to form a coordinate 
covalent bond 

 

Key Points (Continued) 
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Hybrid Orbitals Required for Complex Ion Formation 

 Based on the number and arrangement of ligands  
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The Crystal Field Model - An Introduction 

 Focuses on the energies of the d orbitals 

 Attempts to account for the magnetic properties 
and colors of complex ions  

 Assumptions  

 Ligands can be approximated by negative point 
charges  

 Metal–ligand bonding is entirely ionic 
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Figure 21.20 - Octahedral Arrangement of Point-Charge 
Ligands and the Orientation of the 3d Orbitals 
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Octahedral Complexes 

 dz
2 and dx2–y2 point their lobes directly at the 

point-charge ligands 

 dxz, dyz, and dxy point their lobes between the 
point charges 

 Negative point-charge ligands repel negatively 
charged electrons 

 Electrons will first fill the d orbitals farthest from the 
ligands to minimize repulsions 
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Figure 21.21 - The Energies of the 3d Orbitals for a 
Metal Ion in an Octahedral Complex 
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Splitting of 3d Orbital Energies (Δ) 

 Explains the color and magnetism of complex ions 
of the first-row transition metal ions 

 Strong-field case: Splitting produced by ligands is 
very large  

 Electrons pair in the lower-energy t2g orbitals  

 Gives a diamagnetic complex in which all the electrons are 
paired 

 Low-spin case: Yields the minimum number of unpaired 
electrons 
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Splitting of 3d Orbital Energies (Δ) (Continued) 

 Weak-field case: Splitting is small  

 Causes the electrons to occupy all five orbitals prior to 
pairing  

 The resulting complex contains four unpaired electrons and 
will be paramagnetic  

 High-spin case: Yields the maximum number of unpaired 
electrons 
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Figure 21.22 - Possible Electron Arrangements in the 
Split 3d Orbitals in an Octahedral Complex of Co3+ 
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Critical Thinking 

 What if you are told the number of unpaired 
electrons for a coordinate covalent ion and are 
asked to tell if the ligand produced a strong or 
weak field?  

 Give an example of a coordinate covalent ion for 
which you could decide if it produced a strong or weak 
field and one for which you couldn’t, and explain your 
answers 
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Interactive Example 21.4 - Crystal Field Model I 

 The Fe(CN)6
3– ion is known to have one unpaired 

electron 

 Does the CN– ligand produce a strong or weak field? 
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Interactive Example 21.4 - Solution 

 The ligand is CN– and the overall complex ion 
charge is 3– 

 The metal ion must be Fe3+, which has a 3d5 electron 
configuration 

 There are two possible arrangements of the five 
electrons in the d orbitals split by the octahedrally 
arranged ligands 
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Interactive Example 21.4 - Solution (Continued) 

 

 

 

 

 The strong-field case gives one unpaired electron, 
which agrees with the experimental observation 

 The CN– ion is a strong-field ligand toward the Fe3+ ion 
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Spectrochemical Series 

 Listing of ligands in order based on their ability to 
produce d-orbital splitting 
 

 

CN– > NO2
– > en > NH3 > H2O > OH– > F– > Cl– > Br– > I– 

 

 

 Magnitude of Δ for a given ligand increases as the 
charge on the metal ion increases 

Strong-field 
ligands  

(large Δ) 

Weak-field ligands  
(small Δ) 



Section 21.6 
The Crystal Field Model 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Interactive Example 21.5 - Crystal Field Model II 

 Predict the number of unpaired electrons in the 
complex ion Cr(CN)6

4– 
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Interactive Example 21.5 - Solution 

 The net charge of 4– means that the metal ion 
present must be Cr2+ (–6 + 2 = –4), which has a 
3d4 electron configuration 

 Since CN– is a strong-field ligand, the correct crystal 
field diagram for Cr(CN)6

4– is 



Section 21.6 
The Crystal Field Model 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Interactive Example 21.5 - Solution (Continued) 

 The complex ion will have two unpaired electrons 

 Note that the CN– ligand produces such a large 
splitting that all four electrons will occupy the t2g set 
even though two of the electrons must be paired in 
the same orbital  
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Complex Ion Colors 

 When a substance absorbs certain 
wavelengths of light in the visible 
region, its color is determined by 
the wavelengths of visible light 
that remain 

 Substance exhibits the color 
complementary to those absorbed 

 Example - Violet color of Ti(H2O)6
3+ 
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Table 21.16 - Approximate Relationship of Wavelength 
of Visible Light Absorbed to Color Observed 
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Complex Ion Colors (Continued 1)  

 Wavelength absorbed by a molecule is 
determined by the following relationship: 

 

 

 ΔE - Energy spacing in the molecule  

 λ - Wavelength of light required  
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Complex Ion Colors (Continued 2)  

 Ligands coordinated to a given metal ion 
determine the size of the d-orbital splitting 

 Color changes as the ligands are changed 

 Caused by a change in Δ that implies a change in the 
wavelength of light needed to transfer electrons between 
the t2g and eg orbitals 
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Other Coordination Geometries 

 Tetrahedral arrangement 

 None of the 3d orbitals point at the ligands 

 Difference in energy between the split d orbitals is 
significantly less 

 Tetrahedral splitting is     that of the octahedral 
splitting for a given ligand and metal ion 
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Other Coordination Geometries (Continued) 

 d-orbital splitting will be opposite to that for the 
octahedral arrangement  

 dxy, dxz, and dyz orbitals are closer to the point charges  

 Weak-field case (high-spin) always applies as the d-orbital 
splitting is relatively small for the tetrahedral case 
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Interactive Example 21.6 - Crystal Field Model III 

 Give the crystal field diagram for the tetrahedral 
complex ion CoCl4

2– 
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Interactive Example 21.6 - Solution 

 The complex ion contains Co2+, which has a 3d7 
electron configuration 

 The splitting of the d orbitals will be small, since this is 
a tetrahedral complex, giving the high-spin case with 
three unpaired electrons 
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 Δoct > Δtet  

 dz2 and dx2–y2 
orbitals point their 
lobes directly at 
the point charges, 
making them 
relatively high in 
energy  

Figure 21.27 - Crystal Field Diagrams for Octahedral and 
Tetrahedral Complexes 
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 Obtained from the octahedral arrangement by 
removing the two point charges along the z axis 

 Lowers the energy of dz2 

 Leaves only dx2–y2 

 Points at the four remaining             
ligands  

Square Planar Complexes  
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Linear Complexes  

 Obtained from the octahedral arrangement by: 

 Retaining 2 ligands along the z axis  

 Removing 4 ligands in the xy plane 

 Only dz2 points at the ligands and is highest in energy  
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Critical Thinking  

 This figure shows a crystal 
field diagram for a square 
planar complex oriented in 
the xy plane 

 What if you oriented the 
complex in the xz plane?  

 Sketch the crystal field diagram 
and contrast it with the figure  
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Biological Necessity of Metal Ion Complexes 

 Used in humans: 

 For the transport and storage of oxygen 

 As electron-transfer agents, catalysts, and drugs 

 First-row transition metals are important for 
human health  
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Table 21.18 - First-Row Transition Metals and Their 
Biological Significance 
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Biological Importance of Iron 

 Plays a central role in all living cells 

 Mammals gain energy from the oxidation of 
proteins, carbohydrates, and fats  

 Electrons from the breakdown of the nutrients are 
passed along the respiratory chain 

 Cytochromes: Iron-containing species that are the 
principal electron-transfer molecules in the respiratory 
chain  

 Composed of an iron complex (heme) and a protein  
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The Heme Complex 

 Contains an Fe2+ or Fe3+ ion that is coordinated to 
porphyrin 

 Porphyrin: A complicated planar ligand  

 All porphyrins contain the same central ring structure but 
have different substituent groups at the edges  

 Porphyrin molecules act as tetradentate ligands for 
many metal ions  

 Example - Chlorophyll is a magnesium–porphyrin complex 
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Figure 21.29 - The Heme Complex 
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Role of Iron in the Storage of Oxygen in Mammals  

 Myoglobin: Oxygen storage molecule, which 
consists of a heme complex and a protein  

 Involves the direct bonding between an O2 molecule 
and Fe2+ 

 When gaseous O2 is bubbled in an aqueous solution 
containing heme, Fe2+ is oxidized to Fe3+ 

 Oxidation does not occur in myoglobin  

 Involves an O2 bridge between Fe2+ ions 
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Myoglobin 

 The Fe2+ ion is coordinated 
to four nitrogen atoms in 
the porphyrin of the heme 
and on nitrogen from the 
protein chain 

 This leaves a sixth 
coordination position (the 
W) available for an oxygen 
molecule 



Section 21.7 
The Biological Importance of Coordination 
Complexes 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Role of Iron in the Transportation of Oxygen 

 Hemoglobin: Molecule that contains four 
myoglobin-like units 

 Helps in the transportation of oxygen in the blood  

 Each hemoglobin contains two α chains and two  
chains, each with a heme complex near the center  

 Can bind four oxygen molecules to form a bright red 
diamagnetic complex 

 When the oxygen molecule is released, water molecules 
occupy the sixth coordination position around each Fe2+ 
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Figure 21.32 - A Representation of the Hemoglobin 
Structure 



Section 21.7 
The Biological Importance of Coordination 
Complexes 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Sickle Cell Anemia 

 During protein synthesis for 
hemoglobin, an improper amino acid 
is inserted into the protein in two 
places  

 Due to the nonpolar nature of the 
incorrect amino acid, the hemoglobin 
drastically changes its shape  
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Effect of High Altitudes on Humans  

 Reaction between hemoglobin and oxygen 

          ⇌ 

 

 Oxygen content in high altitudes is low 

 Position of the equilibrium will shift to the left 
according to Le Châtelier’s principle 

 Lower levels of oxyhemoglobin cause fatigue, 
dizziness, and high-altitude sickness 

       2 2 4
Hb  + 4O          Hb Oaq g aq

Hemoglobin Oxyhemoglobin 
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Effect of High Altitudes on Humans (Continued) 

 The human body is capable of adapting to lower 
levels of oxygen by making more hemoglobin 

 Causes the equilibrium to shift back to the right  

 High-altitude acclimatization  

 Effect of high altitude can be felt for a few weeks, but 
it disappears as hemoglobin levels in the body 
increase  
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Toxicity of Carbon Monoxide and the Cyanide Ion 

 Carboxyhemoglobin: Stable complex of 
hemoglobin and carbon monoxide 

 Prevents normal oxygen uptake in the blood  

 Can result in asphyxiation 

 Cyanide ion - Respiratory inhibitor  

 Coordinates strongly to cytochrome oxidase, an iron-
containing cytochrome enzyme catalyst  

 Prevents the electron-transfer process, and rapid death 
results 
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Metallurgy 

 Process of separating a metal from its ore and 
preparing it for use 

 Steps  

 Mining 

 Pretreatment of the ore 

 Reduction to the free metal 

 Purification of the metal (refining) 

 Alloying 
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Extracting a Metal from Its Ore  

 Ore is a mixture of minerals (pure metal 
compounds) and gangue (sand, clay, and rock) 

 Ores must be treated to remove the gangue  

 Ores are pulverized and then processed in various 
devices  

 Cyclone separators 

 Inclined vibrating tables 

 Flotation tanks 
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Extracting a Metal from Its Ore (Continued 1) 

 Flotation process: Method of separating the 
mineral particles in an ore from the gangue 

 Depends on the greater wettability of the mineral 
pieces  

 Crushed ore is fed into a tank with a mixture of water, oil, 
and detergent  

 A stream of air is blown through the mixture to skim the oil-
covered pieces 
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Extracting a Metal from Its Ore (Continued 2) 

 After ensuring that the mineral is concentrated, it 
is chemically altered for the reduction step 

 Carbonates and hydroxides can be converted by 
simple heating 

 Roasting: Sulfide minerals are converted to oxides by 
heating in air at temperatures below their melting 
points 

 Smelting: Reducing a metal ion to the free metal  

 Depends on the electron affinity of the metal ion  
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Zone Refining  

 Process used for extracting highly pure metals  

 Steps 

 A bar of impure metal travels through a heater  

 Causes the metal to melt and recrystallize as it cools  

 Purification of the metal  

 As the crystal re-forms, metal ions are more likely to fit 
better in the crystal lattice than are the atoms of impurities  

 Impurities are carried to the end of the bar 
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Figure 21.35 - Schematic Representation of Zone 
Refining 
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Pyrometallurgy  

 Traditional metallurgical process that requires 
tremendous amounts of energy  

 Drawbacks 

 Leads to atmospheric pollution  

 High costs make it economically unfeasible to treat 
low-grade ores  
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Hydrometallurgy  

 Uses aqueous chemical solutions to extract 
metals from their ores through a process called 
leaching  

 Uses 

 Extraction of gold from low-grade ores 

 Production of alumina (aluminum oxide) from bauxite 
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Extraction of Gold from Low-Grade Ores  

 Cyanidation: Process that treats crushed ore with 
an aqueous cyanide solution in the presence of air  

 Dissolves gold by forming the complex ion Au(CN)2
– 

 

 

 Pure gold is then recovered by reaction of the 
Au(CN)2

– solution with zinc powder to reduce Au+ to 
Au 
 

 

 

             2 2 2
4Au  + 8CN  + O  + 2H O 4Au CN   4OH

  s aq g l aq aq

           
2

2 4
2Au CN  + Zn 2Au  + Zn CNaq s s aq

 

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Extraction of Alumina from Bauxite 

 Conducted using the Bayer process 

 The ore is leached with sodium hydroxide at high 
temperatures and pressures to dissolve the 
amphoteric aluminum oxide  

 

 

 Leaves behind solid impurities such as SiO2, Fe2O3, and 
TiO2 

       2 3 2 2Al O  + 2OH 2AlO  + H Os aq aq l 
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Extraction of Alumina from Bauxite (Continued) 

 After the impurities are removed, the pH of the 
solution is lowered, and pure aluminum oxide is 
formed  

 The product is electrolyzed to produce aluminum 
metal  
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Steps in Hydrometallurgy  

 Selective leaching of a metal from its ore 

 Leaching agent 

 Can be water if the metal-containing compound is a water-
soluble chloride or sulfate 

 If the metal is present in a water-insoluble substance, 
aqueous solutions containing acids, bases, oxidizing agents, 
and salts are used 

 Recovering the metal ion from the solution by 
selective precipitation as an ionic compound  
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Metallurgy of Iron 

 Iron is found in the earth’s crust in many minerals  

 Iron pyrite (FeS2) 

 Siderite (FeCO3) 

 Hematite (Fe2O3) 

 Magnetite (FeO · Fe2O3) 

 Taconite ores 

 Iron is reduced in a blast furnace  
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Figure 21.36 - The Blast Furnace 
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Metallurgy of Iron - Terms 

 Slag: Molten calcium silicate and alumina 

 Product of the reaction between CaCO3 that loses CO2 
in the blast furnace and combines with silica and other 
impurities  

 

 Pig iron: Impure iron that is collected from the 
blast furnace 

 

 

 

 

2 3CaO + SiO CaSiO
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Production of Steel 

 Steel is an alloy 

 Can be classified as:  

 Carbon steel: Contains approximately 1.5% carbon 

 Alloy steel: Contains carbon and Cr, Co, Mn, or Mo 

 Iron is converted to steel by an oxidation process 
that eliminates unwanted impurities 

 Open hearth process  

 Basic oxygen process  
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Oxidation Reactions of Steelmaking 

 Manganese, phosphorus, and silicon in the 
impure iron react with oxygen to form oxides 

 Oxides react with fluxes to form slag 

 Choice of flux depends on the major impurities present  

     Heat

2 3Acidic flux: MnO  + SiO  MnSiOs s l

     Heat

2 3

Heat

4 10 3 4 2

Basic flux: SiO  + MgO MgSiO

                  P O ( ) + 6CaO( )  2Ca (PO ) ( )





s s l

s s l
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Figure 21.37 - Schematic Diagram of the Open Hearth 
Process for Steelmaking 
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Basic Oxygen Process for Steelmaking 

 Faster method  

 Exothermic oxidation reactions 
proceed rapidly  

 Produce enough heat to raise the 
temperature nearly to the boiling 
point of iron without an external 
heat source 
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Electric Arc Method of Steel Making  

 An electric arc between carbon electrodes is used 
to melt the charge 

 No fuel-borne impurities are added to the steel, since 
no fuel is needed 

 Higher temperatures lead to more effective 
removal of sulfur and phosphorus impurities 

 Oxygen is added in the process 

 Helps control oxide impurities in the steel effectively 
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Heat Treatment of Steel 

 Pure iron exists in two crystalline forms based on 
the temperature  

 α-iron - Body-centered cubic structure of iron when 
the temperature is less than 912°C  

 Austentite or γ-iron - Iron has a face-centered cubic 
structure when temperature is between 912°C and 
1394°C 

 δ-iron - Body-centered cubic structure identical to α-
iron at 1394°C 
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Alloying Iron with Carbon  

 Forms the interstitial alloy carbon steel 

 The temperature at which α-iron is converted to 
austentite falls by 200°C 
 At high temperatures, iron and carbon can react to 

form cementite, an iron carbide  

          ⇌ 

 

 Thus, steel is a mixture of iron metal in one of its 
crystal forms, carbon, and cementite  

33Fe + C + energy       Fe C

Heat Cementite 
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Alloying Iron with Carbon (Continued 1) 

 Much of the carbon is converted to cementite 
when steel is heated to 1000°C 

 The equilibrium shifts to the left if the steel is allowed 
to cool slowly 

 Small crystals of carbon precipitate 

 The equilibrium does not have time to adjust if the 
cooling is rapid 

 The cementite is trapped, and the steel has a high cementite 
content 
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Alloying Iron with Carbon (Continued 2) 

 Tempering: Heating a mixture to intermediate 
temperatures followed by a rapid cooling process 

 Used for fine-tuning the proportions of carbon crystals 
and cementite in steel to give the desired properties 


