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Thermodynamics - An Introduction  

 First law of thermodynamics states that the 
energy of the universe is constant 

 Statement of law of conservation of energy  

 Spontaneous process: Occurs without external 
intervention 

 Can be fast or slow  
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Thermodynamics versus Kinetics 

 Domain of kinetics 

 Rate of a reaction depends on 
the pathway from reactants to 
products 

 Thermodynamics  

 Provides information on whether 
a reaction is spontaneous based 
only on the properties of the 
reactants and products 
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Entropy (S) 

 Thermodynamic function that describes the 
number of arrangements that are available to a 
system existing in a given state 

 Measure of molecular randomness or disorder 
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The Expansion of an Ideal Gas into an Evacuated Bulb 

 Nature 
spontaneously 
proceeds toward 
the states that 
have the highest 
probabilities of 
existing 
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Microstate 

 Each configuration that gives 
a particular arrangement  

 Probability of occurrence of a 
state depends on the number 
of microstates in which the 
arrangement can be achieved  



Section 17.1 
Spontaneous Processes and Entropy 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Table 17.1 - The Microstates That Give a Particular 
Arrangement (State) 
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Table 17.1 - The Microstates That Give a Particular 
Arrangement (State) (Continued) 
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Positional Probability  

 Depends on the number of configurations in 
space that yield a particular state  

 Gas expands into a vacuum to give a uniform 
distribution  

 Expanded state has the highest positional probability 
of the states available to the system 
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Positional Probability and Changes of State  

 Positional entropy increases when going from 
solid to gaseous state  
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Positional Entropy and Solutions  

 Entropy change when mixing two pure substances 
is expected to be positive  

 Result of the presence of more microstates for the 
mixed condition  

 Caused due to the increased volume available to a 
given particle after mixing occurs 

 Formation of solutions is favored by an increase in 
positional entropy that is associated with mixing 
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Interactive Example 17.1 - Positional Entropy 

 For each of the following pairs, choose the 
substance with the higher positional entropy (per 
mole) at a given temperature 

a. Solid CO2 and gaseous CO2  

b. N2 gas at 1 atm and N2 gas at 1.0×10–2 atm  
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Interactive Example 17.1 - Solution (a) 

 Since a mole of gaseous CO2 has the greater 
volume by far, the molecules have many more 
available positions than in a mole of solid CO2 

 Thus, gaseous CO2 has the higher positional entropy 
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Interactive Example 17.1 - Solution (b) 

 A mole of N2 gas at 1.0×10–2 atm has a volume 
100 times that (at a given temperature) of a mole 
of N2 gas at 1 atm  

 Thus, N2 gas at 1.0×10–2 atm has the higher positional 
entropy 
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Interactive Example 17.2 - Predicting Entropy Changes 

 Predict the sign of the entropy change for each of 
the following processes 

a. Solid sugar is added to water to form a solution 

b. Iodine vapor condenses on a cold surface to form 
crystals 
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Interactive Example 17.2 - Solution (a)  

 Sugar molecules become randomly dispersed in 
the water when the solution forms and thus have 
access to a larger volume and a larger number of 
possible positions 

 Positional disorder is increased, and there will be an 
increase in entropy 

 ΔS is positive, since the final state has a larger entropy 
than the initial state, and ΔS = Sfinal – Sinitial 
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Interactive Example 17.2 - Solution (b)  

 Gaseous iodine is forming a solid 

 This process involves a change from a relatively large 
volume to a much smaller volume, which results in 
lower positional disorder 

 For this process ΔS is negative, implying that the 
entropy decreases 
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Second Law of Thermodynamics 

 In any spontaneous process, there is always an 
increase in the entropy of the universe 

 First law of thermodynamics  

 Energy of the universe is constant 

 Energy is conserved, entropy is not  
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Changes in Entropy of the Universe  

 ΔSuniv is positive  

 Entropy of the universe increases 

 Process is spontaneous in the direction written  

 ΔSuniv is negative  

 Process is spontaneous in the opposite direction 

  ΔSuniv is zero 

 Process has no tendency to occur 

 System is at equilibrium  
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Critical Thinking  

 What if ΔSuniv was a state function?  

 How would the world be different? 
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Example 17.3 - The Second Law 

 In a living cell, large molecules are assembled 
from simple ones 

 Is this process consistent with the second law of 
thermodynamics? 
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Example 17.3 - Solution  

 To reconcile the operation of an order-producing 
cell with the second law of thermodynamics, we 
must remember that ΔSuniv, not ΔSsys, must be 
positive for a process to be spontaneous 

 A process for which ΔSsys is negative can be 
spontaneous if the associated ΔSsurr is both larger 
and positive 

 The operation of a cell is such a process 
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Entropy Changes in the Surroundings (ΔSsurr) 

 ΔSsurr is determined by flow of energy as heat 

 Exothermic process increases ΔSsurr  

 Important driving force for spontaneity  

 Endothermic process decreases ΔSsurr  

 Impact of transfer of energy as heat to or from 
the surroundings is greater at lower temperatures  
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Entropy Changes in the Surroundings (ΔSsurr) (Continued) 

 Sign of ΔSsurr depends on the direction of the heat 
flow 

 At constant temperature: 

 ΔSsurr for exothermic processes is positive  

 ΔSsurr for endothermic processes is negative  

 Magnitude of ΔSsurr depends on the temperature 
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Characteristics of the Entropy Changes That Occur in the 
Surroundings - Summary 
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ΔSsurr and ΔH 

 ΔSsurr can be expressed in terms of ΔH for a 
process occurring at constant pressure                      

 Heat flow = change in enthalpy = ΔH 

 Components of ΔH 

 Sign - Indicates the direction of flow  

 Determined in accordance with the reaction system 

 Number - Indicates the quantity of energy  
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ΔSsurr and ΔH (Continued) 

 Reaction takes place under conditions of constant 
temperature (in Kelvins) and pressure  

 

 

 If the reaction is exothermic: 

 ΔH has a negative sign  

 ΔSsurr is positive since heat flows into the surroundings 
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Table 17.3 - Interplay of ΔSsys and ΔSsurr in Determining 
the Sign of ΔSuniv 

29 
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Interactive Example 17.4 - Determining ΔSsurr 

 In the metallurgy of antimony, the pure metal is 
recovered via different reactions, depending on 
the composition of the ore 

 For example, iron is used to reduce antimony in sulfide 
ores 

 2 3Sb S ( ) + 3Fe( ) 2Sb( ) + 3FeS( )      = 125kJs s s s H  
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Interactive Example 17.4 - Determining ΔSsurr (Continued) 

 Carbon is used as the reducing agent for oxide ores: 

 

 

 Calculate ΔSsurr for each of these reactions at 25°C 
and 1 atm 

4 6Sb O ( ) + 6C( ) 4Sb( ) + 6CO( )     Δ  = 778 kJs s s g H
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Interactive Example 17.4 - Solution 

 

 

 For the sulfide ore reaction, 

 

 

 ΔSsurr is positive since this reaction is exothermic, and 
heat flow occurs to the surroundings, increasing the 
randomness of the surroundings 

 

 

 

surr

Δ
Δ = , where  = 25 + 273 = 298 K

H
S T

T


surr

 125 kJ
Δ = = 0.419 kJ/K = 419 J/K

298 K
S



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Interactive Example 17.4 - Solution (Continued)  

 For the oxide ore reaction, 

 

 

 

 In this case ΔSsurr is negative because heat flow occurs 
from the surroundings to the system  

3

surr

 778 kJ
Δ =  = 2.61 kJ/K = 2.61 × 10  J/K

298 K


  S
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Free Energy (G) 

 

 H - Enthalpy  

 T - Temperature in K  

 S - Entropy  

 At constant temperature, 

 

 All quantities refer to the system  
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Relationship between Free Energy (G) and Spontaneity  

 Divide both sides of the equation ΔG = ΔH – TΔS 
by –T 

 

 At constant temperature (T) and pressure (P), 
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Δ Δ
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Relationship between Free Energy (G) and Spontaneity 
(Continued)  

 

 

 Processes that occur at constant T and P are 
spontaneous in the direction in which the free 
energy decreases 

 Negative ΔG means positive ΔSuniv 
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Table 17.5 - Various Possible Combinations of ΔH and 
ΔS 
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Critical Thinking 

 Consider an ideal gas in a container fitted with a 
frictionless, massless piston 

 What if weight is added to the top of the piston?  

 We would expect the gas to be compressed at 
constant temperature 

 For this to be true, ΔS would be negative (since the gas 
is compressed) and ΔH would be zero (since the 
process is at constant temperature)  
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Critical Thinking (Continued)  

 This would make ΔG positive  

 Does this mean the isothermal compression of the gas is not 
spontaneous?  

 Defend your answer 
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Interactive Example 17.5 - Free Energy and Spontaneity 

 At what temperatures is the following process 
spontaneous at 1 atm?  

 

 

 What is the normal boiling point of liquid Br2? 

 

2 2

o o

                    Br ( ) Br ( )

Δ = 31.0 kJ/mol and Δ = 93.0 J/K mol

l g

H S




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Interactive Example 17.5 - Solution  

 The vaporization process will be spontaneous at 
all temperatures where ΔG°is negative 

 Note that ΔS°favors the vaporization process 
because of the increase in positional entropy, and 
ΔH°favors the opposite process, which is exothermic 

 These opposite tendencies will exactly balance at the 
boiling point of liquid Br2, since at this temperature 
liquid and gaseous Br2 are in equilibrium (ΔG°= 0) 
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Interactive Example 17.5 - Solution (Continued 1)  

 We can find this temperature by setting ΔG°= 0 
in the following equation: 

Δ = Δ ΔG H T S   

4Δ 3.10 ×10  J/mol
=  =  = 333K

Δ 93.0 J/K mol

H
T 

S



 

0 Δ ΔH T S  

 Δ ΔH = T S 
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Interactive Example 17.5 - Solution (Continued 2)  

 At temperatures above 333 K, TΔS°has a larger 
magnitude than ΔH°, and ΔG°is negative 

 Above 333 K, the vaporization process is spontaneous 

 The opposite process occurs spontaneously below this 
temperature 

 At 333 K, liquid and gaseous Br2 coexist in 
equilibrium 
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Interactive Example 17.5 - Solution (Continued 3)  

 Summary of observations (the pressure is 1 atm in 
each case) 

 T > 333 K  

 The term ΔS°controls, and the increase in entropy when 
liquid Br2 is vaporized is dominant 

 T < 333 K  

 The process is spontaneous in the direction in which it is 
exothermic, and the term ΔH°controls 
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Interactive Example 17.5 - Solution (Continued 4)  

 T = 333 K  

 The opposing driving forces are just balanced (ΔH°= 0), and 
the liquid and gaseous phases of bromine coexist 

 This is the normal boiling point 
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Exercise  

 Ethanethiol (C2H5SH; also called ethyl mercaptan) 
is commonly added to natural gas to provide the 
“rotten egg” smell of a gas leak 

 The boiling point of ethanethiol is 35°C and its heat 
of vaporization is 27.5 kJ/mol 

 What is the entropy of vaporization for this 
substance? 

89.3 J/K·mol 
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Entropy Changes and Chemical Reactions  

 Positional probability determines the changes 
that occur in a chemical system  

 Fewer the molecules, fewer the possible 
configurations  
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2 2 3Ammonia synthesis : N (g) + 3H (g) 2NH (g)
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Entropy Changes in Reactions That Involve Gaseous 
Molecules  

 Change in positional entropy is dominated by the 
relative numbers of molecules of gaseous 
reactants and products 

 If the number of product molecules is greater than the 
number of reactant molecules: 

 Positional entropy increases  

 ΔS is positive  
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Interactive Example 17.6 - Predicting the Sign of ΔS° 

 Predict the sign of ΔS°for each of the following 
reactions 

a. Thermal decomposition of solid calcium carbonate 

 
 

b. Oxidation of SO2 in air 

 

3 2CaCO ( ) CaO( ) + CO ( )s s g

2 2 32SO ( ) + O ( ) 2SO ( )g g g
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Interactive Example 17.6 - Solution  

a. Since in this reaction a gas is produced from a 
solid reactant, the positional entropy increases, 
and ΔS°is positive 

b. Here three molecules of gaseous reactants 
become two molecules of gaseous products 

 Since the number of gas molecules decreases, 
positional entropy decreases, and ΔS°is negative 
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Entropy Changes  

 Third law of thermodynamics  

 Entropy of a perfect crystal at 0 K is zero 

 Entropy of a substance increases with 
temperature 
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Entropy Values   

 Standard entropy values (S°) represent increase 
in entropy that occurs when a substance is heated 
from 0 K to 298 K at 1 atm 

 More complex the molecule, the higher the standard 
entropy value  
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Entropy Change for a Given Chemical Reaction 

 Entropy is a state function of a chemical system  

 Entropy changes can be calculated as follows: 

 

 
 

 Σ - Sum of all terms  

 nr - Number of moles of a reactant 

 np- Number of moles of a product 
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reaction p products r reactantsΔ =S n S n S    
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Figure 17.6 - Entropy of Water  

 H2O molecule can vibrate 
and rotate in several 
ways 

 Freedom of motion leads 
to a higher entropy for 
water 
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Interactive Example 17.7 - Calculating ΔS° 

 Calculate ΔS°at 25°C for the following reaction: 

 
 

 The following information is given: 

2 22NiS( ) + 3O ( ) 2SO ( ) + 2NiO( )s g g s



Section 17.5 
Entropy Changes in Chemical Reactions 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Interactive Example 17.7 - Solution  

p products r reactantsΔ =S n S n S    

2 2SO ( ) NiO( ) NiS( ) O ( )= 2S + 2S 2S 3S     g s s s

J J
= 2 mol 248 + 2 mol 38

K mol K mol

J J
   2 mol 53 3 mol 205

K mol K mol

   
   

    

   
    

    
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Interactive Example 17.7 - Solution (Continued)  

 

 
 

 We would expect ΔS°to be negative because the 
number of gaseous molecules decreases in this 
reaction 

 

= 496 J/K + 76 J/K 106 J/K  615 J/K S     

= 149 J/KS 
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Exercise   

 Predict the sign of ΔSₒ and then calculate ΔS°for 
each of the following reactions: 

a.   

 

b.   

 

c.   

2 2 rhombic 22H S( ) + SO ( ) 3S ( ) + 2H O ( )g g s g

3 2 22SO ( ) 2SO ( ) + O ( )g g g

2 3 2 2Fe O ( ) + 3H ( ) 2Fe( ) +3H O( )s g s g

Negative 
 ΔS°= –186 J/K 

Positive 
 ΔS°= 187 J/K 

Hard to predict 
since Δn = 0 

 ΔS°= 138 J/K 
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Standard Free Energy Change (ΔG°) 

 Change in G that will occur if the reactants in their 
standard states are converted to the products in 
their standard states 

 More negative the value of ΔG°, the further the 
reaction shifts to the right to attain equilibrium  
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Methods for Calculating ΔG° 

 Use the following formula  

 

 Treat free energy as a state function and use 
Hess’s law 

 Use standard free energy of formation  
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–G H T S      
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Interactive Example 17.9 - Calculating ΔH°, ΔS°, and 
ΔG° 

 Consider the following reaction carried out at 
25°C and 1 atm: 

 

 Calculate ΔHₒ, ΔSₒ, and ΔGₒ using the following 
data: 
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2 2 32SO (g) + O (g) 2SO (g)
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Interactive Example 17.9 - Solution  

 The value of ΔH°can be calculated from the 
enthalpies of formation using the following 
formula: 
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p f (products) r f (reactants)Δ =      H n H n H

3 2 2f (SO ( )) f (SO ( )) f (O ( ))Δ 2Δ 2Δ Δ      g g gH H H H

   = 2 mol 396 kJ/mol 2 mol 297 kJ/mol 0   

= 792 kJ + 594 kJ = 198 kJ
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Interactive Example 17.9 - Solution (Continued 1)  

 The value of ΔS°can be calculated using the 
following formula: 
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p products r reactantsΔ =S  n S n S    

3 2 2SO (g) SO (g) O (g)Δ = 2 2 2S S S S     

= 2 mol (257 J/K mol) 2 mol (248 J/K mol)

    1 mol (205 J/K mol)

  

 

= 514 J/K  496 J/K  205 J/K  = 187 J/K
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Interactive Example 17.9 - Solution (Continued 2)  

 We would expect ΔS°to be negative because three 
molecules of gaseous reactants give two molecules of 
gaseous products 

 The value of ΔG°can now be calculated 
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Δ = Δ ΔG H T S   

 
J 1 kJ

Δ = 198 kJ 298 K 187
K 1000 J

G
  

     
  

= 198 kJ + 55.7 kJ = 142 kJ 
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Interactive Example 17.10 - Calculating ΔG° 

 Use the following data (at 25°C):  

 

 

 

 Calculate ΔG°for the following reaction: 

     

     

o

diamond 2 2

o

graphite 2 2

C  + O CO       Δ = 397 kJ

C  + O CO        Δ = 394 kJ  

s g g G

s g g G

 

 

   diamond graphiteC Cs s

(17.5) 

(17.6) 
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Interactive Example 17.10 - Solution  

 Reverse equation (17.6) to make graphite a 
product, as required, and then add the new 
equation to equation (17.5) 

     diamond 2 2C  + O CO       Δ = 397 kJs g g G    

       2 graphite 2CO C  + O       Δ = 397 kJg s g G     

Reversed Equation (17.6) 

   diamond graphiteC C            Δ = 397 kJ + 394 kJ

                                                        = 3 kJ

s s G    


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Interactive Example 17.10 - Solution (Continued 1)  

 Since ΔG°is negative for this process, diamond 
should spontaneously change to graphite at  
25°C and 1 atm 

 However, the reaction is so slow under these 
conditions that we do not observe the process 

 This is another example of kinetic rather than 
thermodynamic control of a reaction 



Section 17.6 
Free Energy and Chemical Reactions 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Interactive Example 17.10 - Solution (Continued 2)  

 We can say that diamond is kinetically stable with 
respect to graphite even though it is 
thermodynamically unstable 
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Standard Free Energy of Formation (       ) 

 Change in free energy that accompanies the 
formation of 1 mole of a substance from its 
constituent elements  

 All reactants and products are in their standard states 

 Used to calculate the free energy change for a 
reaction  

 

        of an element in its standard state = 0 

p f (products) p f (reactants)Δ = Δ ΔG n G n G    

 °
fG

 °
fG
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Interactive Example 17.11 - Calculating ΔG° 

 Methanol is a high-octane fuel used in high-
performance racing engines 

 Calculate ΔG °for the following reaction: 

 

 The following energies of formation are provided: 

3 2 2 22CH OH( ) + 3O ( ) 2CO ( ) + 4H O( )g g g g
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Interactive Example 17.11 - Solution   

 Use the following equation: 

p f (products) p f (reactants)Δ = Δ ΔG  n G n G    

           2 2 2 3f CO f H O f O f CH OH
= 2Δ + 4Δ  3Δ  2Δ     

g g g g
G G G G

   

   

= 2 mol 394 kJ/mol  + 4 mol 229 kJ/mol

   3 0 2 mol 163 kJ/mol

 

  

 = 1378 kJG  
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Interactive Example 17.11 - Solution (Continued)  

 The large magnitude and the negative sign of 
ΔG°indicate that this reaction is very favourable 
thermodynamically 
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Free Energy and Pressure 

 System under constant P and T proceeds 
spontaneously in the direction that lowers its free 
energy  

 Free energy of a reaction system changes as the 
reaction proceeds 

 Dependent on the pressure of a gas or on the concentration 
of species in solution 

 Equilibrium - Point where free energy value is at 
its lowest  
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Free Energy and Pressure (Continued 1)  

 For ideal gases: 

 Enthalpy is not pressure-dependent  

 Entropy depends on pressure due to its dependence 
on volume  

 At a given temperature for 1 mole of ideal gas: 

 Slarge volume > Ssmall volume  

  Or, 

 Slow pressure > Shigh pressure  
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Free Energy and Pressure (Continued 2)  

 

 

 G° - Free energy of a gas at 1 atm 

 G - Free energy of the gas at a pressure of P atm 

 R - Universal gas constant 

 T - Temperature in Kelvin  
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 = + lnG G  RT P
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Free Energy and Pressure (Continued 3)  

 

 

 Q - Reaction quotient 

 T - Temperature in Kelvin  

 R - Universal gas constant (8.3145 J/K·mol) 

 ΔG°- Free energy change at 1 atm 

 ΔG - Free energy change at specified pressures  
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 = + lnG G RT Q  
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Interactive Example 17.13 - Calculating ΔG°  

 One method for synthesizing methanol (CH3OH) 
involves reacting carbon monoxide and hydrogen 
gases 

 

 Calculate ΔG at 25°C for this reaction where carbon 
monoxide gas at 5.0 atm and hydrogen gas at 3.0 atm 
are converted to liquid methanol 

 

     2 3CO  + 2H CH OHg g l
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Interactive Example 17.13 - Solution  

 To calculate ΔG for this process, use the following 
equation: 
 

 First compute ΔGₒ from standard free energies of 
formation 

 

 = + lnG G RT Q  

  3

o

f CH OH
Δ 166 kJ 

l
G   2

o

f H
Δ 0

g
G 

  
o

f CO
Δ 137 kJ

g
G  

 o 4Δ = 166 kJ 137 kJ 0 = 29 kJ = 2.9×10  JG      
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Interactive Example 17.13 - Solution (Continued 1)  

 One might call this the value of ΔG°for one round of 
the reaction or for 1 mole of the reaction 

 Thus, the ΔG°value might better be written as            
–2.9×104 J/mol of reaction, or –2.9×104 J/mol rxn 

 Use this value to calculate the value of ΔG 
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Interactive Example 17.13 - Solution (Continued 2)  

 ΔG°= – 2.9×104 J/mol rxn 

 R = 8.3145 J/K·mol 

 T = 273 + 25 = 298 K 

 

 

 Note that the pure liquid methanol is not included in 
the calculation of Q 

 

     
2

2

22

CO H

1 1
 =  =  = 2.2×10

5.0 3.0
Q

P P


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Interactive Example 17.13 - Solution (Continued 3)  

 = + lnG G RT Q  

 

    

4

2

= 2.9×10  J/mol rxn

   + 8.3145 J/K mol rxn 298K ln 2.2×10





   4 3

4

= 2.9×10  J/mol rxn 9.4×10  J/mol rxn

3.8×10  J/mol rxn = 38 kJ/mol rxn

 

  
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Interactive Example 17.13 - Solution (Continued 4)  

 Note that ΔG is significantly more negative than 
ΔG°, implying that the reaction is more 
spontaneous at reactant pressures greater than 1 
atm 

 This result can be expected from Le Châtelier’s 
principle 
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The Meaning of ΔG for a Chemical Reaction 

 Even when value of ΔG provides information 
regarding whether the system is favored under a 
given set of conditions: 

 System may not proceed to pure products (if ΔG is 
negative)  

 System may not remain at pure reactants (if ΔG is 
positive) 

 A system will spontaneously seek equilibrium 
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The Meaning of ΔG for a Chemical Reaction (Continued) 

 System can achieve the lowest possible free 
energy by going to equilibrium, not by going to 
completion 
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Equilibrium Point  

 Occurs at the lowest value of free energy 
available to the reaction system 

 Consider the following hypothetical equation where 
1.0 mole of gaseous A is initially placed in a reaction 
vessel at 2.0 atm 

   A (g) ⇌ B (g) 
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A A Afree energy of A = = ° + ln(P )G G RT
B B Bfree energy of B = = ° + ln(P )G G RT

A BTotal free energy of system =  = + G G G
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Figure 17.8 - Equilibrium Point  
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Equilibrium Point (Continued 1)  

87 

 When substances undergo a chemical reaction, 
the reaction proceeds to the minimum free 
energy (equilibrium) 

 This corresponds to the point where: 

    

 

 

products reactants= G G

products reactantsΔ  = – = 0G G G
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Equilibrium Point (Continued 2) 

88 

 Quantitative relationship between free energy 
and the value of the equilibrium constant is given 
by: 

  

 

 Δ  = 0 = Δ ° + RT lnG G K

 Δ ° = RT lnG K
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Figure 17.9 - Plot of Energy versus the Mole Fraction of 
the reaction of A(g)  

89 
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Table 17.6 - Qualitative Relationship between the 
ΔG°and the K for a Given Reaction  
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Interactive Example 17.15 - Free Energy and Equilibrium 
II 

 The overall reaction for the corrosion (rusting) of 
iron by oxygen is as follows: 

  4Fe(s) + 3O2(g) ⇌ 2Fe2O3(s)  

 Using the following data, calculate the equilibrium 
constant for this reaction at 25°C 
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Interactive Example 17.15 - Solution  

 Calculate ΔG° from ΔG° = ΔH°– TΔS°  

2 3 2f(Fe O ( )) f(O ( )) f(Fe( ))Δ = 2Δ 3Δ 4Δ     s g sH H H H

 
6

= 2 mol 826 kJ/mol 0 0

= 1652 kJ = 1.652×10  J

  

 

2 3 2Fe O O FeΔ = 2 3 4S S S S     

   

 

= 2 mol 90 J/K mol 3 mol 205 J/K mol

     4 mol 27 J/K mol 543 J/K

  

   

T = 273 + 25 = 298 K
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Interactive Example 17.15 - Solution (Continued 1)  

 Therefore,  

ΔG° = ΔH°– TΔS° 

= (– 1.652×106 J) – (298 K)  (– 543 J/K)  

=  – 1.490 ×106 J 

   6Δ =  ln  = 1.490 ×10  JG RT K  

    = 8.3145 J/K mol 298K ln K 

 
6

3

1.490×10
ln =  = 601

2.48×10
K
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Interactive Example 17.15 - Solution (Continued 2)  

 Therefore,  

K = e601 

 This is a very large equilibrium constant 

 The rusting of iron is clearly very favourable from a 
thermodynamic point of view 
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The Temperature Dependence of K 

 Quantitative dependence of K on temperature is 
given by: 

 
Δ Δ

ln  =  +  
 


H S

K
RT R

 l –)– (nG RT K H T S       

y  =       mx    +    b 

 
Δ 1 Δ

ln =  + 
 

  


 



H S
K

R T R
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The Temperature Dependence of K (Continued)  

 If the values of K are determined at various levels 
of T: 

 Plot of ln(K) versus 1/T will be linear  

 Slope = – ΔH°/R 

 Intercept = ΔS°/R 

 Assume that ΔH°and ΔS°are independent of T  
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Relationship Between Free Energy and Work  

 Maximum possible useful work obtainable from a 
process at constant temperature and pressure is 
equal to the change in free energy 

 

 Achieving the maximum work available from a 
spontaneous process can occur only via a 
hypothetical pathway 

 Any real pathway wastes energy 
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Reversible and Irreversible Processes 

 Reversible process: Universe is exactly the same 
as it was before a cyclic process 

 Irreversible process: Universe is different after a 
cyclic process  

 All real processes are irreversible 

 Characteristics of a real cyclic process 

 Work is changed to heat  

 Entropy of the universe increases  
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Figure 17.11 - Reversible Process as Seen in a Battery 
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Revisiting the Laws of Thermodynamics  

 First law 

 You can’t win; you can only break even 

 Second law 

 You can’t break even 

 As we use energy, we degrade its usefulness 

Copyright © Cengage Learning. All rights reserved 100 



Section 17.9 
Free Energy and Work 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Critical Thinking   

 What if the first law of thermodynamics was true 
but the second law was not?  

 How would the world be different? 


