

Chapter 16

Solubility and Complex Ion Equilibria

Copyright ©2017 Cengage Learning. All Rights Reserved.

Zumdahl

Zumdahl

Chapter 16 *Table of Contents*

- (16.1) Solubility equilibria and the solubility product
- (16.2) Precipitation and qualitative analysis
- (16.3) Equilibria involving complex ions

Equilibria

- When a typical ionic solid dissolves in water, it separates into cations and anions
- Example

$$\operatorname{CaF}_{2}(s) \xrightarrow{H_{2}O} \operatorname{Ca}^{2+}(aq) + 2F^{-}(aq)$$

- Ions formed Ca²⁺ and F⁻
- In this reaction, when solid salt is first added, no ions are present
- As dissolution proceeds, the ionic concentration increases

Equilibria (Continued)

The dissolution reaction and its reverse occurs, simultaneously

$$\operatorname{Ca}^{2+}(aq) + 2F^{-}(aq) \rightarrow \operatorname{Ca}F_{2}(s)$$

 Ultimately, the solution attains a state of saturation (dynamic equilibrium)

$$\operatorname{CaF}_2(s) \rightleftharpoons \operatorname{Ca}^{2+}(aq) + 2F^{-}(aq)$$

• Equilibrium expression - $K_{sp} = [Ca^{2+}][F^{-}]^2$

Solubility Equilibria

- Solubility product constant (K_{sp})
 - Equilibrium expression constant that represents the dissolution of an ionic solid in water
 - Known as solubility product
- Solubility equilibrium is unaffected by:
 - Excess solid formed
 - Size of particles present

Solubility Equilibria (Continued)

- Differences between the solubility of a given solid and its solubility product
 - Solubility is an equilibrium position
 - Solubility product is an equilibrium constant
 - Has only one value for a given solid at a given temperature

Section 16.1 Solubility Equilibria and the Solubility Product

Interactive Example 16.2 - Calculating K_{sp} from Solubility II

Calculate the K_{sp} value for bismuth sulfide (Bi₂S₃), which has a solubility of 1.0 × 10⁻¹⁵ mol/L at 25° C

Interactive Example 16.2 - Solution

The system initially contains H₂O and solid Bi₂S₃, which dissolves as follows:

$$\operatorname{Bi}_{2}S_{3}(s) \rightleftharpoons 2\operatorname{Bi}^{3+}(aq) + 3S^{2-}(aq)$$
$$K_{sp} = [\operatorname{Bi}^{3+}]^{2} [S^{2-}]^{3}$$

 Since no Bi³⁺ and S²⁻ ions were present in the solution before Bi₂S₃ dissolved,

$$[\mathrm{Bi}^{3+}]_0 = [\mathrm{S}^{2-}]_0 = 0$$

Interactive Example 16.2 - Solution (Continued 1)

- Thus, the equilibrium concentrations of these ions will be determined by the amount of salt that dissolves to reach equilibrium, which in this case is 1.0 × 10⁻¹⁵ mol/L
- Since each Bi₂S₃ unit contains 2Bi³⁺ and 3S²⁻ ions,

$$1.0 \times 10^{-15} \text{ mol/L Bi}_2 S_3(s) \longrightarrow 2(1.0 \times 10^{-15} \text{ mol/L}) \text{Bi}^{3+}(aq) + 3(1.0 \times 10^{-15} \text{ mol/L}) \text{S}^{2-}(aq)$$

Section 16.1 Solubility Equilibria and the Solubility Product

Interactive Example 16.2 - Solution (Continued 2)

The equilibrium concentrations are

$$\begin{bmatrix} Bi^{3+} \end{bmatrix} = \begin{bmatrix} Bi^{3+} \end{bmatrix}_0 + change = 0 + 2.0 \times 10^{-15} \text{ mol/L}$$
$$\begin{bmatrix} S^{2-} \end{bmatrix} = \begin{bmatrix} S^{2-} \end{bmatrix}_0 + change = 0 + 3.0 \times 10^{-15} \text{ mol/L}$$

Therefore,

$$K_{\rm sp} = \left[\mathrm{Bi}^{3+}\right]^2 \left[\mathrm{S}^{2-}\right]^3 = \left(2.0 \times 10^{-15}\right)^2 \left(3.0 \times 10^{-15}\right)^3 = 1.1 \times 10^{-73}$$

Exercise

- Approximately 0.14 g nickel(II) hydroxide, Ni(OH)₂
 (s), dissolves per liter of water at 20° C
 - Calculate K_{sp} for Ni(OH)₂ (s) at this temperature

$$K_{\rm sp} = 1.4 \times 10^{-8}$$

Section 16.1 Solubility Equilibria and the Solubility Product

Interactive Example 16.3 - Calculating Solubility from K_{sp}

- The K_{sp} value for copper(II) iodate, Cu(IO₃)₂, is
 1.4 × 10⁻⁷ at 25° C
 - Calculate its solubility at 25° C

Interactive Example 16.3 - Solution

The system initially contains H₂O and solid Cu(IO₃)₂, which dissolves according to the following equilibrium

$$\operatorname{Cu}(\operatorname{IO}_3)_2(s) \rightleftharpoons \operatorname{Cu}^{2+}(aq) + 2\operatorname{IO}_3^-(aq)$$

 $K_{\rm sp} = [{\rm Cu}^{2+}][{\rm IO}_3^-]^2$

To find the solubility of Cu(IO₃)₂, we must find the equilibrium concentrations of the Cu²⁺ and IO₃⁻ ions

Interactive Example 16.3 - Solution (Continued 1)

- We do this in the usual way by specifying the initial concentrations (before any solid has dissolved) and then defining the change required to reach equilibrium
- Since in this case we do not know the solubility, we will assume that x mol/L of the solid dissolves to reach equilibrium
- The 1:2 stoichiometry of the salt means that

 $x \operatorname{mol/L} \operatorname{Cu}(\operatorname{IO}_3)_2(s) \rightarrow x \operatorname{mol/L} \operatorname{Cu}^{2+}(aq) + 2x \operatorname{mol/L} \operatorname{IO}_3^-(aq)$

Solubility Equilibria and the Solubility Product

Section 16.1

Interactive Example 16.3 - Solution (Continued 2)

The concentrations are as follows:

Section 16.1 Solubility Equilibria and the Solubility Product

Interactive Example 16.3 - Solution (Continued 3)

Substituting the equilibrium concentrations into the expression for K_{sp} gives

1.4 × 10⁻⁷ =
$$K_{sp} = [Cu^{2+}][IO_3^-]^2 = (x)(2x)^2 = 4x^3$$

$$x = \sqrt[3]{3.5 \times 10^{-8}} = 3.3 \times 10^{-3} \text{ mol/L}$$

• Thus, the solubility of solid $Cu(IO_3)_2$ is 3.3×10^{-3} mol/L

Exercise

- Calculate the solubility of each of the following compounds in moles per liter
 - a. Ag_3PO_4 $K_{sp} = 1.8 \times 10^{-18}$

1.6 × 10⁻⁵ mol/L

b. $CaCO_3$ $K_{sp} = 8.7 \times 10^{-9}$

9.3 × 10⁻⁵ mol/L

Relative Solubilities

- One must be careful in using K_{sp} values to predict the relative solubilities of a group of salts
- Possible cases
 - Salts being compared produce the same number of ions
 - *K*_{sp} values cannot be compared to determine relative solubilities
 - Salts being compared produce varying number of ions
 - Cannot predict relative solubilities using K_{sp} values

Section 16.1 Solubility Equilibria and the Solubility Product

Common Ion Effect

The solubility of a solid becomes low when the solution already contains ions common to the solid

A potassium chromate solution being added to aqueous silver nitrate, forming silver chromate

Critical Thinking

- What if all you know about two salts is that the value of K_{sp} for salt A is greater than that of salt B?
 - Why can we not compare relative solubilities of the salts?
 - Use numbers to show how salt A could be more soluble than salt B, and how salt B could be more soluble than salt A

Section 16.1 Solubility Equilibria and the Solubility Product

Interactive Example 16.4 - Solubility and Common Ions

• Calculate the solubility of solid CaF₂ (K_{sp} = 4.0 × 10⁻¹¹) in a 0.025-*M* NaF solution

Interactive Example 16.4 - Solution

- Before any CaF₂ dissolves, the solution contains the major species Na⁺, F⁻, and H₂O
 - The solubility equilibrium for CaF₂ is

$$\operatorname{CaF}_{2}(s) \rightleftharpoons \operatorname{Ca}^{2+}(aq) + 2\operatorname{F}^{-}(aq)$$

$$K_{\rm sp} = 4.0 \times 10^{-11} = \left[{\rm Ca}^{2+} \right] \left[{\rm F}^{-} \right]^{2}$$

Solubility Equilibria and the Solubility Product

Section 16.1

Interactive Example 16.4 - Solution (Continued 1)

 Substituting the equilibrium concentrations into the expression for K_{sp} gives

$$K_{\rm sp} = 4.0 \times 10^{-11} = \left[{\rm Ca}^{2+} \right] \left[{\rm F}^{-} \right]^2 = (x) (0.025 + 2x)^2$$

Section 16.1 Solubility Equilibria and the Solubility Product

Interactive Example 16.4 - Solution (Continued 2)

 Assuming that 2x is negligible compared with 0.025 (since K_{sp} is small) gives

$$4.0 \times 10^{-11} \approx (x)(0.025)^2$$

 $x \approx 6.4 \times 10^{-8}$

The approximation is valid (by the 5% rule)

Solubility =
$$x = 6.4 \times 10^{-8}$$
 mol/L

• Thus 6.4 \times 10⁻⁸ mole of solid CaF₂ dissolves per liter of the 0.025-*M* NaF solution

Section 16.1 Solubility Equilibria and the Solubility Product

pH and Solubility

- Increase in pH
 - Decreases solubility
 - Forces the equilibrium to the left
- Decrease in pH
 - Increases solubility
 - Equilibrium shifts to the right
 - If the anion X⁻ is an effective base, the salt MX will show increased solubility in an acidic solution

pH and Solubility (Continued)

- Exception AgCl has the same solubility in acid as in pure water
 - Cl⁻ ion is a weak base
 - No HCl molecules are formed
 - Adding H⁺ ions to a solution that contains Cl⁻ ions does not affect:
 - Concentration of the Cl⁻ ion
 - Solubility of the chloride salt

Critical Thinking

- You and a friend are studying for a chemistry exam
 - What if your friend tells you that since acids are very reactive, all salts are more soluble in aqueous solutions of acids than in water?
 - How would you explain to your friend that this is not true?
 - Use a specific example to defend your answer

Precipitation

Ion product (Q)

- Defined similar to the expression for K_{sp} for a given solid
- Exception Initial concentrations are used instead of equilibrium concentrations

Relationship between Q and K_{sp}

- One can predict the possibility of precipitation by considering the relationship between Q and K_{sp}
 - *Q* > *K*_{sp}
 - Precipitation occurs and will continue until the concentrations are reduced to the point that they satisfy K_{sp}
 - *Q* < *K*_{sp}
 - No precipitation occurs

Interactive Example 16.5 - Determining Precipitation Conditions

- A solution is prepared by adding 750.0 mL of 4.00 × 10⁻³ M Ce(NO₃)₃ to 300.0 mL of 2.00 × 10⁻² M KIO₃
 - Will Ce(IO₃)₃ ($K_{sp} = 1.9 \times 10^{-10}$) precipitate from this solution?

Interactive Example 16.5 - Solution

First, we calculate [Ce³⁺]₀ and [IO₃⁻]₀ in the mixed solution before any reaction occurs:

$$\left[\text{Ce}^{3+} \right]_{0} = \frac{(750.0 \text{ mL})(4.00 \times 10^{-3} \text{ mmol/mL})}{(750.0 + 300.0) \text{ mL}} = 2.86 \times 10^{-3} M$$
$$\left[\text{IO}_{3}^{-} \right]_{0} = \frac{(300.0 \text{ mL})(2.00 \times 10^{-2} \text{ mmol/mL})}{(750.0 + 300.0) \text{ mL}} = 5.71 \times 10^{-3} M$$

Interactive Example 16.5 - Solution (Continued)

The ion product for Ce(IO₃)₃ is

$$Q = \left[\text{Ce}^{3+} \right]_0 \left[\text{IO}_3^{-} \right]_0^3 = \left(2.86 \times 10^{-3} \right) \left(5.71 \times 10^{-3} \right)^3$$
$$= 5.32 \times 10^{-10}$$

Since Q is greater than K_{sp}, Ce(IO₃)₃ will precipitate from the mixed solution

Calculating Equilibrium Concentrations after Precipitation

- Step 1 Determine if the product is formed when the solutions are mixed
 - Calculate the concentration of the ions in the mixed solution to determine Q
- Step 2 Run the reaction to completion
 - Note If a reaction virtually goes to completion when two solutions are mixed, it is necessary to conduct stoichiometric calculations prior to equilibrium calculations

Calculating Equilibrium Concentrations after Precipitation Occurs (Continued)

- Step 3 Allow the system to adjust to equilibrium and determine the concentrations of ions in the solution
- Step 4 Substitute the expressions derived in step 3 to determine K_{sp}

Interactive Example 16.6 - Precipitation

- A solution is prepared by mixing 150.0 mL of 1.00 × 10⁻² M Mg(NO₃)₂ and 250.0 mL of 1.00 × 10⁻¹ M NaF
 - Calculate the concentrations of Mg²⁺ and F⁻ at equilibrium with solid MgF₂ ($K_{sp} = 6.4 \times 10^{-9}$)

Interactive Example 16.6 - Solution

- First, determine whether solid MgF₂ forms
 - To do this, we need to calculate the concentrations of Mg²⁺ and F⁻ in the mixed solution and find Q

$$\begin{bmatrix} Mg^{2+} \end{bmatrix}_{0} = \frac{\text{mmol } Mg^{2+}}{\text{mL solution}} = \frac{(150.0 \text{ mL})(1.00 \times 10^{-2} M)}{400.0 \text{ mL}} = 3.75 \times 10^{-3} M$$
$$\begin{bmatrix} F^{-} \end{bmatrix}_{0} = \frac{\text{mmol } F^{-}}{\text{mL solution}} = \frac{(250.0 \text{ mL})(1.00 \times 10^{-1} M)}{400.0 \text{ mL}} = 6.25 \times 10^{-2} M$$
$$Q = \begin{bmatrix} Mg^{2+} \end{bmatrix}_{0} \begin{bmatrix} F^{-} \end{bmatrix}_{0}^{2} = (3.75 \times 10^{-3})(6.25 \times 10^{-2})^{2} = 1.46 \times 10^{-5}$$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 16.6 - Solution (Continued 1)

- Since Q is greater than K_{sp}, solid MgF₂ will form
- The next step is to run the precipitation reaction to completion

	Mg ²⁺	+	2F-	\longrightarrow	MgF ₂ (s)
Before reaction	$(150.0)(1.00 \times 10^{-2})$ = 1.50 mmol		$(250.0)(1.00 \times 10^{-1})$ = 25.0 mmol		
After reaction	1.50 - 1.50 = 0		25.0 - 2(1.50) = 22.0 mmol		

Interactive Example 16.6 - Solution (Continued 2)

- Note that excess F⁻ remains after the precipitation reaction goes to completion
 - The concentration is

$$\left[F^{-} \right]_{\text{excess}} = \frac{22.0 \text{ mmol}}{400.0 \text{ mL}} = 5.50 \times 10^{-2} M$$

 Although we have assumed that Mg²⁺ is completely consumed, we know that [Mg²⁺] will not be zero at equilibrium

Interactive Example 16.6 - Solution (Continued 3)

- We can compute the equilibrium [Mg²⁺] by letting MgF₂ redissolve to satisfy the expression for K_{sp}
- How much MgF₂ will dissolve in a 5.50 × 10⁻² M NaF solution?

$$MgF_2(s) \rightleftharpoons Mg^{2+}(aq) + 2F^{-}(aq)$$

$$K_{\rm sp} = \left[\mathrm{Mg}^{2+} \right] \left[\mathrm{F}^{-} \right]^2 = 6.4 \times 10^{-9}$$

Interactive Example 16.6 - Solution (Continued 4)

Initial Concentration (mol/L)		Equilibrium Concentration (mol/L)
$[Mg^{2+}]_0 = 0$ [F ⁻]_0 = 5.50 × 10 ⁻²	$\begin{array}{c} x \text{ mol/L} \\ \hline MgF_2(s) \\ \hline \text{dissolves} \end{array}$	$[Mg^{2+}] = x$ $[F^{-}] = 5.50 \times 10^{-2} + 2x$

$$K_{\rm sp} = 6.4 \times 10^{-9} = \left[Mg^{2+} \right] \left[F^{-} \right]^{2}$$
$$= (x) (5.50 \times 10^{-2} + 2x)^{2} \approx (x) (5.50 \times 10^{-2})^{2}$$
$$\left[Mg^{2+} \right] = x = 2.1 \times 10^{-6} M \quad \left[F^{-} \right] = 5.50 \times 10^{-2} M$$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Selective Precipitation

- Method used to separate mixtures of metal ions in aqueous solution
- Involves using a reagent whose anion forms a precipitate with only one or a few of the metal ions in the mixture

Selective Precipitation - Example

- Consider a solution containing Ba²⁺ and Ag⁺ ions
 - NaCl is added to this solution
 - Result
 - AgCl precipitates as a white solid
 - BaCl₂ is soluble, so Ba²⁺ ions remain in the solution

Example 16.7 - Selective Precipitation

- A solution contains 1.0 × 10⁻⁴ M Cu⁺ and 2.0 × 10⁻³ M Pb²⁺
 - If a source of I⁻ is added gradually to this solution, will PbI₂ ($K_{sp} = 1.4 \times 10^{-8}$) or CuI ($K_{sp} = 5.3 \times 10^{-12}$) precipitate first?
 - Specify the concentration of I⁻ necessary to begin precipitation of each salt

Example 16.7 - Solution

For Pbl₂, the K_{sp} expression is

$$1.4 \times 10^{-8} = K_{\rm sp} = \left[{\rm Pb}^{2+} \right] \left[{\rm I}^{-} \right]^2$$

• Since $[Pb^{2+}]$ in this solution is known to be 2.0×10^{-3} *M*, the greatest concentration of I⁻ that can be present without causing precipitation of PbI₂ can be calculated from the K_{sp} expression

Example 16.7 - Solution (Continued 1)

$$1.4 \times 10^{-8} = \left[\text{Pb}^{2+} \right] \left[\text{I}^{-} \right]^{2} = \left(2.0 \times 10^{-3} \right) \left[\text{I}^{-} \right]^{2}$$
$$\left[\text{I}^{-} \right] = 2.6 \times 10^{-3} M$$

- Any I⁻ in excess of this concentration will cause solid Pbl₂ to form
- Similarly, for Cul, the K_{sp} expression is

$$5.3 \times 10^{-12} = K_{sp} = \left[Cu^{+} \right] \left[I^{-} \right] = \left(1.0 \times 10^{-4} \right) \left[I^{-} \right]$$
$$\left[I^{-} \right] = 5.3 \times 10^{-8} M$$

Example 16.7 - Solution (Continued 2)

- A concentration of I⁻ in excess of 5.3 × 10⁻⁸ M will cause formation of solid Cul
- As I⁻ is added to the mixed solution, CuI will precipitate first, since the [I⁻] required is less
 - Therefore, Cu⁺ would be separated from Pb²⁺ using this reagent

Exercise

- A solution is 1×10^{-4} M in NaF, Na₂S, and Na₃PO₄
 - What would be the order of precipitation as a source of Pb²⁺ is added gradually to the solution?
 - The relevant K_{sp} values are:

$K_{sp}(PbF_2)$	=	4×10^{-8}
K _{sp} (PbS)	=	7×10^{-29}
$K_{\rm sp}[Pb_3(PO_4)_2]$	=	1×10^{-54}

PbS(s) will form first, followed by $Pb_3(PO_4)_2(s)$, and $PbF_2(s)$ will form last

Selective Precipitation of Metal Sulfide Salts

- Metal sulfide salts differ in solubilities
- Sulfide ion is used as a precipitating reagent to separate metal ions
 - Advantage Sulfide ion is basic in nature
 - Its concentration can be controlled by regulating the pH of the solution

Qualitative Analysis

- Involves separating common cations into five major groups based on solubilities
 - Individual ions are then identified from each of the groups
 - Group I Insoluble chlorides
 - Group II Sulfides insoluble in acid solution
 - Group III Sulfides insoluble in basic solution
 - Group IV- Insoluble carbonates
 - Group V Alkali metal and ammonium ions

Group I - Insoluble Chlorides

- After adding dilute HCl to a solution that contains a mixture of common cations:
 - Ag⁺, Pb⁺, and Hg²⁺ precipitate as insoluble chlorides
 - Other chlorides are soluble and remain in the solution
- Group I precipitate is removed
 - The remaining ions are treated with sulfide ion

Group II - Sulfides Insoluble in Acid Solution

- The solution remains acidic after removing insoluble chlorides due to the presence of HCl
 - When H₂S is added to the solution:
 - Highly insoluble sulfides will precipitate due to the low concentration of S²⁻
 - Soluble sulfides will remain dissolved and the precipitate of the insoluble salt is removed

Group III - Sulfides Insoluble in Basic Solution

- The solution is basic at this stage
- More H₂S is added
- Cations that precipitate as sulfides include Co²⁺, Zn²⁺, Mn²⁺, Ni²⁺, and Fe²⁺
 - Cr³⁺ and Al³⁺ ions precipitate as insoluble hydroxides
- Precipitate is separated from the solution

Group IV - Insoluble Carbonates

- All ions, except those from Groups 1A and 2A of the periodic table, have precipitated in this stage
- Group 2A cations form insoluble carbonates
 - Can be precipitated by the addition of CO₃²⁻ to the solution

Group V - Alkali Metal and Ammonium Ions

- Ions remaining in the solution at this stage
 - Group 1A cations
 - NH₄⁺ ion
- Ions form soluble salts with common anions

Complex Ion Equilibria

- Complex ion: Charged species consisting of a metal ion surrounded by ligands
 - Ligand Lewis base
 - Molecule or ion that has a lone pair that can be donated to an empty orbital on the metal ion to form a covalent bond
 - Coordination number Number of ligands attached to a metal ion

Formation (Stability) Constant

- Equilibrium constant for each step of the formation of a complex ion by the addition of an individual ligand to a metal ion or complex ion in aqueous solution
 - Usually, the total concentration of the ligand is larger than the total concentration of the metal ion

Interactive Example 16.8 - Complex Ions

- Calculate the concentrations of Ag⁺, Ag(S₂O₃)⁻, and Ag(S₂O₃)₂³⁻ in a solution prepared by mixing 150.0 mL of 1.00 × 10⁻³ M AgNO₃ with 200.0 mL of 5.00 M Na₂S₂O₃
 - The stepwise formation equilibria are as follows:

 $Ag^{+} + S_2O_3^{2-} \rightleftharpoons Ag(S_2O_3)^{-} \qquad K_1 = 7.4 \times 10^8$ $Ag(S_2O_3)^{-} + S_2O_3^{2-} \rightleftharpoons Ag(S_2O_3)^{3-} \qquad K_2 = 3.9 \times 10^4$

Interactive Example 16.8 - Solution

 The concentrations of the ligand and metal ion in the mixed solution before any reaction occurs are

$$\left[Ag^{+} \right]_{0} = \frac{(150.0 \text{ mL})(1.00 \times 10^{-3} M)}{(150.0 \text{ mL} + 200.0 \text{ mL})} = 4.29 \times 10^{-4} M$$
$$\left[S_{2}O_{3}^{2-} \right]_{0} = \frac{(200.0 \text{ mL})(5.00 M)}{(150.0 \text{ mL} + 200.0 \text{ mL})} = 2.86 M$$

Interactive Example 16.8 - Solution (Continued 1)

Since [S₂O₃⁻²]₀ >> [Ag⁺]₀, and since K₁ and K₂ are large, both formation reactions can be assumed to go to completion, and the net reaction in the solution is as follows:

	Ag ⁺	+	2S ₂ O ₃ ²⁻	\longrightarrow	$Ag(S_2O_3)_2^{3-}$
Before reaction	$4.29 \times 10^{-4} M$		2.86 <i>M</i>		0
After reaction	~0		$2.86 - 2(4.29 \times 10^{-4}) \approx 2.86 M$		$4.29 imes 10^{-4} M$

Interactive Example 16.8 - Solution (Continued 2)

- Note that Ag⁺ is limiting and that the amount of S₂O₃²⁻ consumed is negligible
 - Also note that since all these species are in the same solution, the molarities can be used to do the stoichiometry problem
- Of course, the concentration of Ag⁺ is not zero at equilibrium, and there is some Ag(S₂O₃)⁻ in the solution
 - To calculate the concentrations of these species, we must use the K₁ and K₂ expressions

Section 16.3 Equilibria Involving Complex Ions

Interactive Example 16.8 - Solution (Continued 3)

 We can calculate the concentration of Ag(S₂O₃)⁻ from K₂

$$3.9 \times 10^{4} = K_{2} = \frac{\left[\operatorname{Ag}(\operatorname{S}_{2}\operatorname{O}_{3})_{2}^{3^{-}}\right]}{\left[\operatorname{Ag}(\operatorname{S}_{2}\operatorname{O}_{3})^{-}\right]\left[\operatorname{S}_{2}\operatorname{O}_{3}^{2^{-}}\right]} = \frac{4.29 \times 10^{-4}}{\left[\operatorname{Ag}(\operatorname{S}_{2}\operatorname{O}_{3})^{-}\right]\left(2.86\right)}$$

We can calculate [Ag⁺] from K₁

$$7.4 \times 10^{8} = K_{1} = \frac{\left[Ag(S_{2}O_{3})^{-}\right]}{\left[Ag^{+}\right]\left[S_{2}O_{3}^{2-}\right]} = \frac{3.8 \times 10^{-9}}{\left[Ag^{+}\right]\left(2.86\right)}$$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Section 16.3 *Equilibria Involving Complex Ions*

Interactive Example 16.8 - Solution (Continued 4)

$$\left[\mathrm{Ag}^{+}\right] = 1.8 \times 10^{-18} \ M$$

- These results show that [Ag(S₂O₃)₂³⁻] >> [Ag(S₂O₃)⁻] >> [Ag⁺]
 - Thus, the assumption is valid that essentially all the original Ag⁺ is converted to Ag(S₂O₃)₂³⁻ at equilibrium

Complex Ions and Solubility

- Ionic solids that are nearly water-insoluble must be dissolved somehow in aqueous solutions
 - Example When the various qualitative analysis groups are precipitated out, the precipitates must be redissolved to separate the ions within each group

Strategies for Dissolving a Water-Insoluble Ionic Solid

- If the anion of the solid is a good base, the solubility is greatly increased by acidifying the solution
- When the anion is not sufficiently basic, the ionic solid can be dissolved in a solution containing a ligand that forms stable complex ions with its cation

Strategies for Dissolving a Water-Insoluble Ionic Solid (Continued)

- Some insoluble solids have to go through a combination of reactions to be dissolved
- The solubility of many salts increases with temperature
 - Simple heating is enough to make a salt sufficiently soluble