

Chapter 12 *Table of Contents*

- (12.1) Reaction rates
- (12.2) Rate laws: An introduction
- (12.3) Determining the form of the rate law
- (12.4) The integrated rate law
- (12.5) Reaction mechanisms
- (12.6) A model for chemical kinetics
- (12.7) Catalysis

Reaction Rate

 Change in concentration of a reactant or product per unit time

Rate = $\frac{\text{concentration of A at time } t_2 - \text{concentration of A at time } t_1}{t_2 - t_1}$ $= \frac{\Delta [A]}{\Delta t}$

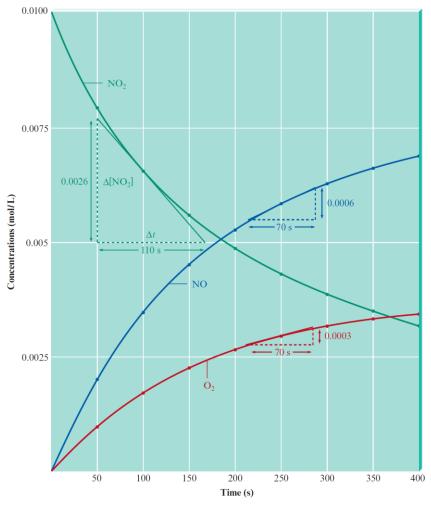
- [A] = Concentration of the reactant or product in mol/L
- Δ = Change in a given quantity

Figure 12.1 - Concentrations of Reactant and Products in the Decomposition of Nitrogen Dioxide as a Function of Time

	Co	Concentration (mol/L)			
Time (±1s)	NO ₂	NO	O ₂		
0	0.0100	0	0		
50	0.0079	0.0021	0.0011		
100	0.0065	0.0035	0.0018		
150	0.0055	0.0045	0.0023		
200	0.0048	0.0052	0.0026		
250	0.0043	0.0057	0.0029		
300	0.0038	0.0062	0.0031		
350	0.0034	0.0066	0.0033		
400	0.0031	0.0069	0.0035		

300° C

Figure 12.1 - The Decomposition of Nitrogen Dioxide at



Copyright ©2017 Cengage Learning. All Rights Reserved.

Average Rate at Which the Concentration of NO₂ Changes over the First 50 Seconds

 $\frac{\text{Change in [NO_2]}}{\text{Time elapsed}} = \frac{\Delta [\text{NO}_2]}{\Delta t}$ $= \frac{[\text{NO}_2]_{t=50} - [\text{NO}_2]_{t=0}}{50 \text{ s} - 0 \text{ s}}$ $= \frac{0.0079 \text{ mol/L} - 0.0100 \text{ mol/L}}{50 \text{ s}}$ $= -4.2 \times 10^{-5} \text{ mol/L} \cdot \text{s}$

Average Rate at Which the Concentration of NO₂ Changes over the First 50 Seconds (Continued 1)

 Since the concentration of NO₂ decreases with time, [NO₂] is a negative quantity

$$Rate = -\frac{\Delta[NO_2]}{\Delta t}$$

 Since the concentrations of reactants always decrease with time, any rate expression involving a reactant will include a negative sign

Average Rate at Which the Concentration of NO₂ Changes over the First 50 Seconds (Continued 2)

Hence,

Rate =
$$-\frac{\Delta[NO_2]}{\Delta t}$$

= $-(-4.2 \times 10^{-5} \text{ mol}/\text{L} \times \text{s})$
= $4.2 \times 10^{-5} \text{ mol/L} \cdot \text{s}$

- Rate is not constant
 - Decreases with time

$\frac{\Delta[NO_2]}{\Delta t}$	Time Period (s)
4.2×10^{-5} 2.8×10^{-5} 2.0×10^{-5} 1.4×10^{-5} 1.0×10^{-5}	$\begin{array}{ccc} 0 \rightarrow & 50 \\ 50 \rightarrow 100 \\ 100 \rightarrow 150 \\ 150 \rightarrow 200 \\ 200 \rightarrow 250 \end{array}$

Instantaneous Rate

- Value of reaction rate at a particular time
- Obtained by computing the slope of a line tangent to the curve at that point
 - Based on figure 12.1

Slope of the tangent line = $\frac{\text{change in } y}{\text{change in } x}$ = $\frac{\Delta [\text{NO}_2]}{\Delta t}$

Instantaneous Rate (Continued)

But

$$Rate = -\frac{\Delta [NO_2]}{\Delta t}$$

Therefore,

Rate = - (slope of the tangent line) = $-\left(\frac{-0.0026 \text{ mol/L}}{110 \text{ s}}\right)$ = 2.4 × 10⁻⁵ mol/L · s

Determining the Rate of Reaction in Terms of Products

Consider the reaction

 $2\mathrm{NO}_2(g) \longrightarrow 2\mathrm{NO}(g) + \mathrm{O}_2(g)$

- NO is produced at the same rate as NO₂ is consumed
- At *t* = 250 seconds

Slope of the tangent to the NO curve = $\frac{6.0 \times 10^{-4} \text{ mol/L}}{70 \text{ s}}$ $= 8.6 \times 10^{-6} \text{ mol/L} \cdot \text{s}$

Determining the Rate of Reaction in Terms of Products (Continued 1)

Slope of the tangent to the O₂ curve = $\frac{3.0 \times 10^{-4} \text{ mol/L}}{70 \text{ s}}$ = $4.3 \times 10^{-6} \text{ mol/L} \cdot \text{s}$

Rate of NO production is twice the rate of O₂ production

Determining the Rate of Reaction in Terms of Products (Continued 2)

- Summary
 - Rate of consumption of NO₂ = Rate of production of NO = 2(rate of production of O₂)

$$-\frac{\Delta[\text{NO}_2]}{\Delta t} = \frac{\Delta[\text{NO}]}{\Delta t} = 2\left(\frac{\Delta[\text{O}_2]}{\Delta t}\right)$$

Rate Law

- Chemical reactions are reversible
 - As NO and O₂ accumulate, they can react to re-form
 NO₂

$$O_2(g) + 2NO(g) \longrightarrow 2NO_2(g)$$

When gaseous NO₂ is placed in an otherwise empty container, initially the dominant reaction is

$$2NO_2(g) \longrightarrow 2NO(g) + O_2(g)$$

Rate Law (Continued)

- Change in the concentration of NO₂ depends only on the forward reaction
 - Reverse reaction becomes important as enough products accumulate after a period of time
- Expression to be used if the reverse reaction is to be neglected

Rate =
$$k [NO_2]^n$$
 (12.1)

- k = rate constant
- n = order of the reactant

Rate Law - Key Points

- The concentrations of the products do not appear in the rate law
 - The reaction rate is being studied under conditions where the reverse reaction does not contribute to the overall rate
- The value of the exponent n must be determined by experiment
 - Cannot be written from the balanced equation

Rate Constant

Definition of reaction rate in terms of the consumption of NO₂

Rate =
$$-\frac{\Delta [NO_2]}{\Delta t} = k [NO_2]^n$$

Definition of the reaction rate in terms of production of O₂

Rate' =
$$-\frac{\Delta [O_2]}{\Delta t} = k' [NO_2]^n$$

Rate Constant (Continued)

 As two moles of NO₂ molecules are consumed for every O₂ molecule produced,

Rate = $2 \times \text{rate'}$

- Or $k[NO_2]^n = 2k'[NO_2]^n$ and $k = 2 \times k'$
- Value of the rate constant depends on how the rate is defined

Types of Rate Laws

- Differential rate law (rate law)
 - Expresses how the rate depends on the concentration of the reactant
- Integrated rate law: Expresses how the concentration depends on time
- The type of rate law used depends on what types of data are easiest to collect

Section 12.3 Determining the Form of the Rate Law

Table 12.3 - Concentration/Time Data for the Reaction $2N_2O_5(soln) \rightarrow 4NO_2(soln) + O_2(g)$ (at 45° C)

$[N_2O_5]$ (mol/L)	Time (s)	
1.00	0	
0.88	200	
0.78	400	
0.69	600	
0.61	800	
0.54	1000	
0.48	1200	
0.43	1400	
0.38	1600	
0.34	1800	
0.30	2000	

Obtaining the Differential Rate Law for a Reaction

Consider the following reaction:

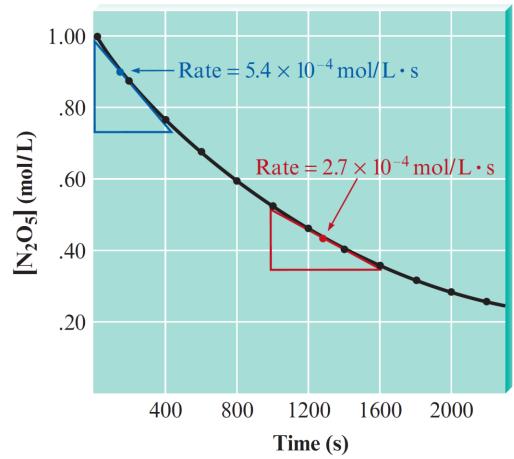
 $2N_2O_5(soln) \longrightarrow 4NO_2(soln) + O_2(g)$

- The reverse reaction is negligible
- Evaluation of reaction rates at concentrations of N₂O₅ of 0.90 *M* and 0.45 *M* yields the following data:

[N ₂ O ₅]	Rate (mol/L⋅s)		
0.90 M 0.45 M	$5.4 imes 10^{-4}$ $2.7 imes 10^{-4}$		

Section 12.3 Determining the Form of the Rate Law

Figure 12.3 - A Plot of the Concentration of N_2O_5 as a Function of Time



Copyright ©2017 Cengage Learning. All Rights Reserved.

Obtaining the Differential Rate Law for a Reaction (Continued)

- When [N₂O₅] is halved, the rate is also halved
 - The (differential) rate law for this reaction is

Rate
$$= -\frac{\Delta[N_2O_5]}{\Delta t} = k[N_2O_5]^1 = k[N_2O_5]$$

 The order of a particular reactant must be obtained by observing how the reaction rate depends on the concentration of that reactant

Rate law for the decomposition of N₂O₅ = $-\frac{\Delta[A]}{\Delta t} = k[A]$

Method of Initial Rates

- Initial rate: The instantaneous rate determined just after t = 0
- Several experiments are carried out using different initial concentrations of each of the reactants
 - The initial rate is determined for each run
 - The results are then compared to see how the initial rate depends on the initial concentrations

Interactive Example 12.1 - Determining a Rate Law

 The reaction between bromate ions and bromide ions in acidic aqueous solution is given by the following equation:

 $\operatorname{BrO}_3^-(aq) + 5\operatorname{Br}^-(aq) + 6\operatorname{H}^+(aq) \rightarrow 3\operatorname{Br}_2(l) + 3\operatorname{H}_2O(l)$

Experiment	Initial Concentration of BrO₃ [−] (mol/L)	Initial Concentration of Br [–] (mol/L)	Initial Concentration of H ⁺ (mol/L)	Measured Initial Rate (mol/L · s)
1	0.10	0.10	0.10	$8.0 imes 10^{-4}$
2	0.20	0.10	0.10	$1.6 imes 10^{-3}$
3	0.20	0.20	0.10	$3.2 imes 10^{-3}$
4	0.10	0.10	0.20	$3.2 imes 10^{-3}$

Interactive Example 12.1 - Determining a Rate Law (Continued)

 Determine the orders for all three reactants, the overall reaction order, and the value of the rate constant

Interactive Example 12.1 - Solution

- General form of the rate law Rate = $k [BrO_3^{-}]^n [Br^{-}]^m [H^{+}]^p$
- Step 1 Determine the value of n
 - Use the results from Experiments 1 and 2

 $\frac{\text{Rate 2}}{\text{Rate 1}} = \frac{1.6 \times 10^{-3} \text{ mol / L} \cdot \text{s}}{8.0 \times 10^{-4} \text{ mol / L} \cdot \text{s}} = \frac{k(0.20 \text{ mol / L})^n (0.10 \text{ mol / L})^m (0.10 \text{ mol / L})^p}{k(0.10 \text{ mol / L})^n (0.10 \text{ mol / L})^m (0.10 \text{ mol / L})^p}$

$$2.0 = \left(\frac{0.20 \text{ mol} / \text{L}}{0.10 \text{ mol} / \text{L}}\right)^n = (2.0)^n$$

Thus, n = 1

Interactive Example 12.1 - Solution (Continued 1)

- Step 2 Determine the value of m
 - Use the results from Experiments 2 and 3

 $\frac{\text{Rate 3}}{\text{Rate 2}} = \frac{3.2 \times 10^{-3} \text{ mol / L} \cdot \text{s}}{1.6 \times 10^{-3} \text{ mol / L} \cdot \text{s}} = \frac{k(0.20 \text{ mol / L})^n (0.20 \text{ mol / L})^m (0.10 \text{ mol / L})^p}{k(0.20 \text{ mol / L})^n (0.10 \text{ mol / L})^m (0.10 \text{ mol / L})^p}$

$$2.0 = \left(\frac{0.20 \text{ mol} / \text{L}}{0.10 \text{ mol} / \text{L}}\right)^m = (2.0)^m$$

Thus, m = 1

Interactive Example 12.1 - Solution (Continued 2)

- Step 3 Determine the value of p
 - Use the results from Experiments 1 and 4

 $\frac{\text{Rate 4}}{\text{Rate 1}} = \frac{3.2 \times 10^{-3} \text{ mol / L} \cdot \text{s}}{8.0 \times 10^{-4} \text{ mol / L} \cdot \text{s}} = \frac{k(0.10 \text{ mol / L})^n (0.10 \text{ mol / L})^m (0.20 \text{ mol / L})^p}{k(0.10 \text{ mol / L})^n (0.10 \text{ mol / L})^m (0.10 \text{ mol / L})^p}$

$$4.0 = \left(\frac{0.20 \text{ mol} / \text{L}}{0.10 \text{ mol} / \text{L}}\right)^{p}$$
$$4.0 = (2.0)^{p} = (2.0)^{2}$$

- Thus, p = 2
- The overall reaction order is n + m + p = 4

Interactive Example 12.1 - Solution (Continued 3)

- The rate law for the reaction
 Rate = k[BrO₃⁻][Br⁻][H⁺]²
- The value of the rate constant k can be calculated from the results of any of the four experiments
- For Experiment 1, the initial rate is 8.0 × 10⁻⁴ mol/L·s

 $[BrO_3^{-}] = 0.100 M, [Br^{-}] = 0.10 M, and [H^{+}] = 0.10 M$

Interactive Example 12.1 - Solution (Continued 4)

- Using the values from the initial rate in the rate law
 - $8.0 \times 10^{-4} \text{ mol} / \text{L} \cdot \text{s} = k(0.10 \text{ mol} / \text{L}) (0.10 \text{ mol} / \text{L}) (0.10 \text{ mol} / \text{L})^2$
 - $8.0 \times 10^{-4} \text{ mol} / \text{L} \cdot \text{s} = k(1.0 \times 10^{-4} \text{ mol}^{4} / \text{L}^{4})$

$$k = \frac{8.0 \times 10^{-4} \text{ mol} / \text{L} \cdot \text{s}}{1.0 \times 10^{-4} \text{ mol}^4 / \text{L}^4} = 8.0 \text{ L}^3 / \text{mol}^3 \cdot \text{s}$$

- Reality Check
 - Verify that the same value of k can be obtained from the results of the other experiments

Integrated Rate Law

- Used to express the reactant concentrations as a function of time
- Basic formula

Rate =
$$-\frac{\Delta[A]}{\Delta t} = k[A]^n$$

First-Order Rate Laws

 Rate law for the decomposition of dinitrogen pentoxide

Rate =
$$-\frac{\Delta[N_2O_5]}{\Delta t} = k[N_2O_5]$$

- This is a first-order reaction
 - Rate of formation of products increases with the increase in the concentration of the reactant

First-Order Rate Laws (Continued)

- The first-order reaction can be converted into an integrated rate law
 - Integrated rate law Expresses the concentration of the reactant as a function of time

$$\ln [N_2 O_5] = -kt + \ln [N_2 O_5]_0$$

- In Natural algorithm
- *t* Time
- [N₂O₅] Concentration of N₂O₅ at time t
- [N₂O₅]₀ Initial concentration of N₂O₅

Integrated First-Order Rate Law

Consider a reaction with the following rate law

Rate =
$$-\frac{\Delta[A]}{\Delta t} = k[A]$$

The integrated first-order rate law is

$$\ln [A] = -kt + \ln [A]_0 \qquad (12.2)$$

Integrated First-Order Rate Law - Key Points

- The equation expresses the influence of time on the concentration of A
 - The initial concentration of A and the rate constant k can be used to calculate the concentration of A at any time
- The equation is of the form y = mx + b
 - $y = \ln[A], x = t, m = -k, and b = \ln[A]_0$
 - For a first-order reaction, a plot of ln[A] versus t is always a straight line

Integrated First-Order Rate Law - Key Points (Continued)

 The equation can be expressed in terms of a ratio of [A] and [A]₀

$$\ln\left(\frac{\left[A\right]_{0}}{\left[A\right]}\right) = kt$$

Interactive Example 12.3 - First-Order Rate Laws II

 Calculate [N₂O₅] at 150 s after the start of the following reaction:

 $2\mathrm{N}_{2}\mathrm{O}_{5}(g) \longrightarrow 4\mathrm{NO}_{2}(g) + \mathrm{O}_{2}(g)$

• Use the following information:

$[N_2O_5]$ (mol/L)	Time (s)
0.1000	0
0.0707	50
0.0500	100
0.0250	200
0.0125	300
0.00625	400

Interactive Example 12.3 - Solution

- Information available
 - [N₂O₅] = 0.0500 mol/L at 100 s
 - [N₂O₅] = 0.0250 mol/L at 200 s
- Formula required to calculate $[N_2O_5]$ after 150 s $\ln [N_2O_5] = -kt + \ln [N_2O_5]_0$
 - Where t = 150 s, k = 6.93 × 10⁻³ s⁻¹, and [N₂O₅]₀ = 0.1000 mol/L

Interactive Example 12.3 - Solution (Continued)

$$\ln \left(\left[N_2 O_5 \right]_{t=150} \right) = - \left(6.93 \times 10^{-3} \,\text{s}^{-1} \right) \left(150 \,\text{s} \right) + \ln(0.100)$$
$$= -1.040 - 2.303 = -3.343$$
$$\left(\left[N_2 O_5 \right]_{t=150} \right) = \text{antilog} \left(-3.343 \right) = 0.0353 \,\text{mol} \,/ \,\text{L}$$

 Note that this value of [N₂O₅] is not halfway between 0.0500 and 0.0250 mol/L

Half-Life of a First-Order Reaction

- Half-life of a reactant (t_{1/2}): Time required for a reactant to reach half its original concentration
- Consider the general reaction $aA \rightarrow products$
 - If the reaction is first order in [A], then

$$\ln\left(\frac{[A]_0}{[A]}\right) = kt$$

• When $t = t_{1/2}$,

$$[A] = \frac{[A]_0}{2}$$

Half-Life of a First-Order Reaction (Continued 1)

• For $t = t_{1/2}$, the integrated rate law becomes

$$\ln\left(\frac{[A]_0}{[A]_0 / 2}\right) = kt_{1/2}$$
 or $\ln(2) = kt_{1/2}$

Substituting the value for ln(2) and solving for t_{1/2}

$$t_{1/2} = \frac{0.693}{k} \tag{12.3}$$

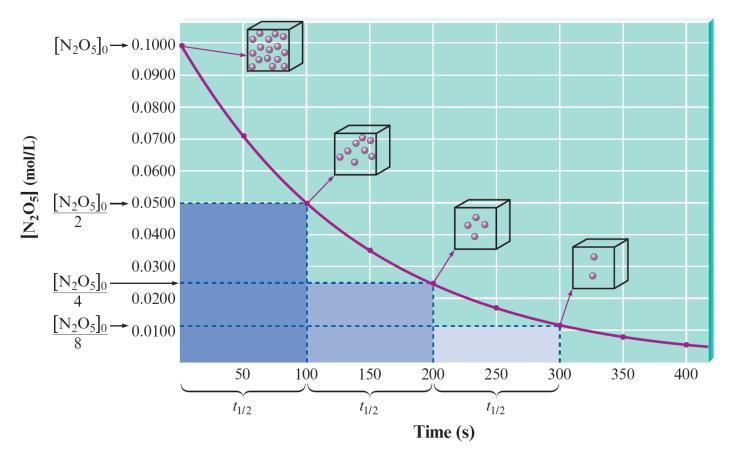
Half-Life of a First-Order Reaction (Continued 2)

- Equation 12.3 can be used to determine:
 - $t_{1/2}$ if k is known
 - k if $t_{1/2}$ is known
- For a first-order reaction, half-life does not depend on concentration

Half-Life for the Decomposition of Dinitrogen Pentoxide

$[N_2O_5]$ (mol/L)	Δt (s)	Ratio of Concentrations	
0.100	0		
		$\frac{[N_2O_5]_{t=100}}{[N_2O_5]_{t=0}} = \frac{0.050}{0.100} = \frac{1}{2}$	
0.0500			
0.0250	$\begin{cases} \Delta t = 100 \text{ s}; \\ 200 \end{cases}$	$\frac{[N_2O_5]_{t=200}}{[N_2O_5]_{t=100}} = \frac{0.025}{0.050} = \frac{1}{2}$	
0.0230		$\frac{[N_2O_5]_{t=300}}{[N_2O_5]_{t=200}} = \frac{0.0125}{0.0250} = \frac{1}{2}$	
0.0125	300 ^J		

Figure 12.4 - A Plot of $[N_2O_5]$ versus Time for the Decomposition of N_2O_5



Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 12.4 - Half-Life for a First-Order Reaction

- A certain first-order reaction has a half-life of 20.0 minutes
 - a. Calculate the rate constant for this reaction
 - b. How much time is required for this reaction to be 75% complete?

Interactive Example 12.4 - Solution (a)

Solving equation (12.3) for k gives

$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{20.0 \text{ min}} = 3.47 \times 10^{-2} \text{ min}^{-1}$$

Interactive Example 12.4 - Solution (b)

We use the integrated rate law in the form

$$\ln\left(\frac{[A]_0}{[A]}\right) = kt$$

 If the reaction is 75% complete, 75% of the reactant has been consumed, leaving 25% in the original form

$$\frac{[A]}{[A]_0} \times 100\% = 25\%$$

Interactive Example 12.4 - Solution (b) (Continued 1)

$$\frac{[A]}{[A]_0} = 0.25 \text{ or } \frac{[A]_0}{[A]} = \frac{1}{0.25} = 4.0$$
$$\ln\left(\frac{[A]_0}{[A]}\right) = \ln(4.0) = kt = \left(\frac{3.47 \times 10^{-2}}{\min}\right)t$$
$$t = \frac{\ln(4.0)}{3.47 \times 10^{-2}} = 40 \min$$

It takes 40 minutes for this particular reaction to reach 75% completion

Interactive Example 12.4 - Solution (b) (Continued 2)

- Alternate way of solving the problem using the definition of half-life
 - After one half-life the reaction has gone 50% to completion
 - If the initial concentration were 1.0 mol/L, after one half-life the concentration would be 0.50 mol/L
 - One more half-life would produce a concentration of 0.25 mol/L

Interactive Example 12.4 - Solution (b) (Continued 3)

- Comparing 0.25 mol/L with the original 1.0 mol/L shows that 25% of the reactant is left after two half-lives
- What percentage of reactant remains after three halflives?
 - Two half-lives for this reaction is 2(20.0 min), or 40.0 min, which agrees with the preceding answer

Second-Order Rate Laws

- Consider a general reaction
 aA → products
 - Rate law for a second-order reaction

Rate =
$$-\frac{\Delta[A]}{\Delta t} = k[A]^2$$
 (12.4)

The integrated second-order rate law has the form

$$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$$
(12.5)

Copyright ©2017 Cengage Learning. All Rights Reserved.

Characteristics of Equation (12.5)

- A plot of 1/[A] versus t will produce a straight line with a slope equal to k
- The equation shows how [A] depends on time and can be used to calculate [A] at any time *t*, provided *k* and [A]₀ are known

Half-Life for a Second-Order Reaction

When one half-life of the second-order reaction has elapsed (t = t_{1/2}), by definition,

$$[A] = \frac{[A]_0}{2}$$

Equation (12.5) becomes

$$\frac{\frac{1}{[A]_0}}{2} = kt_{1/2} + \frac{1}{[A]_0}$$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Half-Life for a Second-Order Reaction (Continued)

$$\frac{2}{[A]_0} - \frac{1}{[A]_0} = kt_{1/2}$$
$$\frac{1}{[A]_0} = kt_{1/2}$$

 Solving for t_{1/2} gives the expression for the half-life of a second-order reaction

$$\mathbf{t}_{1/2} = \frac{1}{k[\mathbf{A}]_0} \tag{12.6}$$

Example 12.5 - Determining Rate Laws

 Butadiene reacts to form its dimer according to the equation

 $2C_4H_6(g) \rightarrow C_8H_{12}(g)$

$[C_4H_6]$ (mol/L)	Time (±1 s)
0.01000	0
0.00625	1000
0.00476	1800
0.00370	2800
0.00313	3600
0.00270	4400
0.00241	5200
0.00208	6200

Example 12.5 - Determining Rate Laws (Continued)

- a. Is this reaction a first order or second order?
- b. What is the value of the rate constant for the reaction?
- c. What is the half-life for the reaction under the initial conditions of this experiment?

Example 12.5 - Solution (a)

 To decide whether the rate law for this reaction is first order or second order, we must see whether the plot of ln[C₄H₆] versus time is a straight line (first order) or the plot of 1/[C₄H₆] versus time is a straight line (second order)

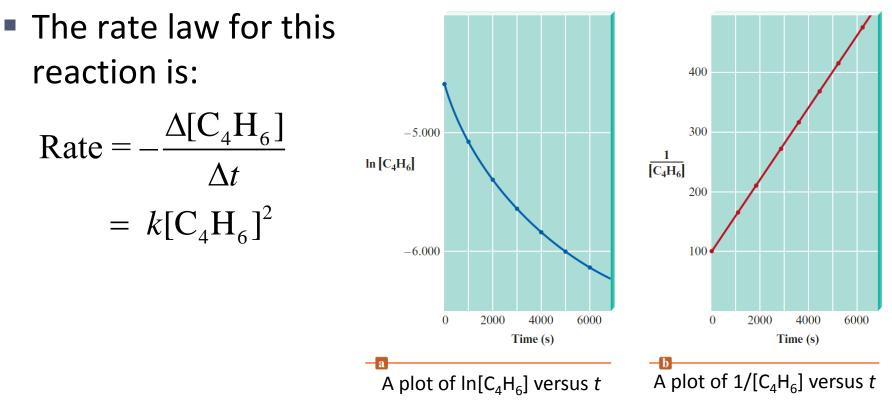
Example 12.5 - Solution (a) (Continued 1)

The data necessary to make these plots are as follows:

<i>t</i> (s)	$\frac{1}{[C_4H_6]}$	$ln[C_4H_6]$
0	100	-4.605
1000	160	-5.075
1800	210	-5.348
2800	270	-5.599
3600	320	-5.767
4400	370	-5.915
5200	415	-6.028
6200	481	-6.175

Example 12.5 - Solution (a) (Continued 2)

The reaction is second order



Example 12.5 - Solution (b)

- For a second-order reaction, a plot of 1/[C₄H₆] versus t produces a straight line of slope k
 - In terms of the standard equation for a straight line, y
 = mx + b, we have y = 1/[C₄H₆] and x = t
 - Slope of the line can be expressed as follows:

Slope =
$$\frac{\Delta y}{\Delta x} = \frac{\Delta \left(\frac{1}{[C_4 H_6]}\right)}{\Delta t}$$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Example 12.5 - Solution (b) (Continued)

Using the points at t = 0 and t = 6200, we can find the rate constant for the reaction

$$k = \text{slope} = \frac{(481 - 100) \text{ L/mol}}{(6200 - 0) \text{ s}} = \frac{381}{6200} \text{ L/mol} \cdot \text{s}$$
$$= 6.14 \times 10^{-2} \text{ L/mol} \cdot \text{s}$$

Example 12.5 - Solution (c)

The expression for the half-life of a second-order reaction is

$$t_{1/2} = \frac{1}{k[A]_0}$$

- In this case $k = 6.14 \times 10^{-2} \text{ L/mol} \cdot \text{s}$ (from part b) and $[A]_0 = [C_4H_6]_0 = 0.01000 \text{ M}$ (the concentration at t = 0) $t_{1/2} = \frac{1}{(6.14 \times 10^{-2} \text{ L/mol} \cdot \text{s}) (1.000 \times 10^{-2} \text{ mol}/\text{L})} = 1.63 \times 10^3 \text{ s}$
 - The initial concentration of C₄H₆ is halved in 1630 s

Half-Life for a First-Order Reaction versus Half-Life of a Second-Order Reaction

- *t*_{1/2}
 - First-order reaction t_{1/2} depends on k
 - Second-order reaction t_{1/2} depends on k and [A]₀
- Half-life
 - First-order reaction A constant time is required to reduce the concentration of the reactant by half
 - Second-order reaction Each successive half-life is double the preceding one

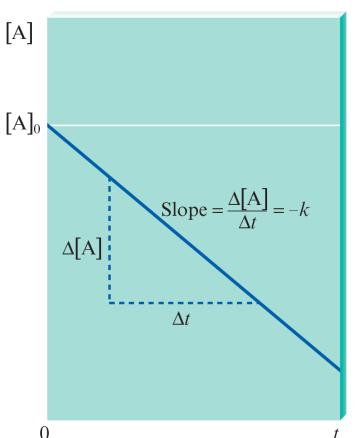
Zero-Order Rate Laws

 Rate law for a zero-order reaction

Rate =
$$k[A]^0 = k(1) = k$$

- The rate is constant
- Integrated rate law for a zeroorder reaction

$$[A] = -kt + [A]_0 \qquad (12.7)$$



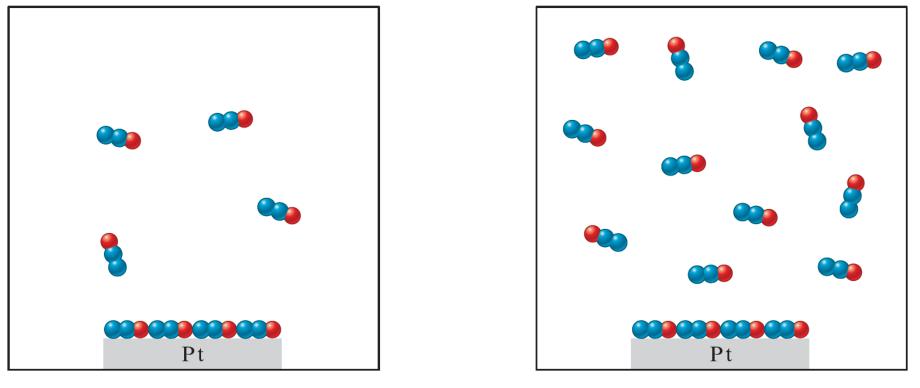
Zero-Order Rate Laws (Continued)

- The expression for the half-life of a zero-order reaction can be obtained from the integrated rate law
 - By definition, $[A] = [A]_0/2$ when $t = t_{1/2}$

$$\frac{[A]_0}{2} = -kt_{1/2} + [A]_0 \quad \text{or} \quad kt_{1/2} = \frac{[A]_0}{2k}$$

• Solving for $t_{1/2}$ gives $t_{1/2} = \frac{[A]_0}{2k}$ (12.8)

Figure 12.7 - The Decomposition of Nitrous Oxide on a Platinum Surface



Critical Thinking

- Consider the simple reaction aA→ products
 - You run this reaction and wish to determine its order
 - What if you made a graph of reaction rate versus time?
 - Could you use this to determine the order?
 - Sketch the three plots of rate versus time for the reaction if it is zero, first, or second order
 - Sketch these plots on the same graph, compare them, and defend your answer

Integrated Rate Laws for Reactions with More Than One Reactant

- Consider the following reaction $BrO_3^{-}(aq) + 5Br^{-}(aq) + 6H^{+}(aq) \longrightarrow 3Br_2(l) + 3H_2O(l)$
 - The rate law is

Rate =
$$-\frac{\Delta[BrO_3^{-}]}{\Lambda t} = k[BrO_3^{-}][Br^{-}][H^{+}]^2$$

- Assume that the reaction occurs under the following conditions:
 - $[BrO_3^{-}]_0 = 1.0 \times 10^{-3} M$
 - [Br⁻]₀ = 1.0 M
 - [H⁺]₀ = 1.0 M

Integrated Rate Laws for Reactions with More than One Reactant (Continued 1)

- As the reaction proceeds, [BrO₃⁻] decreases significantly
 - [Br⁻] and [H⁺] remain approximately constant
 - Thus, $[Br^{-}] = [Br^{-}]_0$ and $[H^{+}] = [H^{+}]_0$
- The rate law can be rewritten as

Rate = $k[Br^{-}]_{0}[H^{+}]_{0}^{2}[BrO_{3}^{-}] = k'[BrO_{3}^{-}]$

Since [Br⁻]₀ and [H⁺]₀ are constant,

 $k' = k[Br^{-}]_{0}[H^{+}]_{0}^{2}$

Integrated Rate Laws for Reactions with More than One Reactant (Continued 2)

- The rate law, rate = $k'[BrO_3^-]$, is first order
 - Known as pseudo-first-order rate law
- Since [Br⁻]₀ and [H⁺] are known, the value of k can be calculated from the equation

$$k' = k[Br^{-}]_{0}[H^{+}]_{0}^{2}$$

Rearranging the equation gives

$$k = \frac{k'}{[Br^{-}]_{0}[H^{+}]_{0}^{2}}$$

Table 12.6 - Summary of the Kinetics for Reactions of Type $aA \rightarrow Products$ That Are Zero-, First-, and Second-Order

		Order		
	Zero	First	Second	
Rate law	Rate = k	Rate = k [A]	Rate = $k[A]^2$	
Integrated rate law	$[A] = -kt + [A]_0$	$\ln[A] = -kt + \ln[A]_0$	$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$	
Plot needed to give a straight line	[A] versus t	ln[A] versus t	$\frac{1}{[A]}$ versus t	
Relationship of rate constant to the slope of straight line	Slope = -k	Slope = -k	Slope = k	
Half-Life	$t_{1/2} = \frac{[A]_0}{2k}$	$t_{1/2} = \frac{0.693}{k}$	$t_{1/2} = \frac{1}{k[A]_0}$	

Reaction Mechanism

- Most chemical reactions occur by a series of steps
- Example The reaction between nitrogen dioxide and carbon monoxide involves the following steps:

$$NO_{2}(g) + NO_{2}(g) \xrightarrow{k_{1}} NO_{3}(g) + NO(g)$$
$$NO_{3}(g) + CO(g) \xrightarrow{k_{2}} NO_{2}(g) + CO_{2}(g)$$

Where k₁ and k₂ are the rate constants of the individual reactions

Reaction Mechanism (Continued)

- In the reaction, NO₃ is an intermediate
 - Intermediate: Species that is formed and consumed during the reaction but is neither a reactant nor a product
- Each of the reactions is called an elementary step
 - Elementary step: A reaction whose rate law can be written from its molecularity

Molecularity

- Number of species that must collide to produce the reaction represented by an elementary step
 - Unimolecular: Reaction that involves one molecule
 - Bimolecular: Reaction that involves the collision of two species
 - Termolecular: Reaction that involves the collision of three species

Requirements of a Reaction Mechanism

- The sum of the elementary steps must give the overall balanced equation for the reaction
- The mechanism must agree with the experimentally determined rate law

Table 12.7 - Examples of Elementary Steps

Elementary Step	Molecularity	Rate Law
$A \rightarrow products$ $A + A \rightarrow products$ (2A $\rightarrow products$)	<i>Uni</i> molecular <i>Bi</i> molecular	Rate = k [A] Rate = k [A] ²
$A + B \rightarrow products$ $A + A + B \rightarrow products$ $(2A + B \rightarrow products)$	<i>Bi</i> molecular <i>Ter</i> molecular	Rate = k [A][B] Rate = k [A] ² [B]
$A + B + C \rightarrow \text{products}$	<i>Ter</i> molecular	Rate = k [A][B][C]

Example 12.6 - Reaction Mechanisms

• The balanced equation for the reaction of the gases nitrogen dioxide and fluorine is $2NO_2(g) + F_2(g) \rightarrow 2NO_2F(g)$

Experimentally determined rate law is

Rate = $k[NO_2][F_2]$

Example 12.6 - Reaction Mechanisms (Continued)

- Suggested mechanism for this reaction is $NO_2 + F_2 \xrightarrow{k_1} NO_2F + F$ (slow) $F + NO_2 \xrightarrow{k_2} NO_2F$ (fast)
 - Is this an acceptable mechanism?
 - Does it satisfy the two requirements?

Example 12.6 - Solution

- First requirement for an acceptable mechanism
 - The sum of the steps should give the balanced equation

$$NO_{2} + F_{2} \longrightarrow NO_{2}F + F$$

$$F + NO_{2} \longrightarrow NO_{2}F$$

$$\overline{2NO_{2} + F_{2} + F} \longrightarrow 2NO_{2}F + F$$
Overall reaction:
$$2NO_{2} + F_{2} \longrightarrow 2NO_{2}F$$

The first requirement is met

Example 12.6 - Solution (Continued)

- Second requirement
 - The mechanism must agree with the experimentally determined rate law
 - The overall reaction rate must be that of the first step
 - The first step is bimolecular, so the rate law is

Rate = $k_1[NO_2][F_2]$

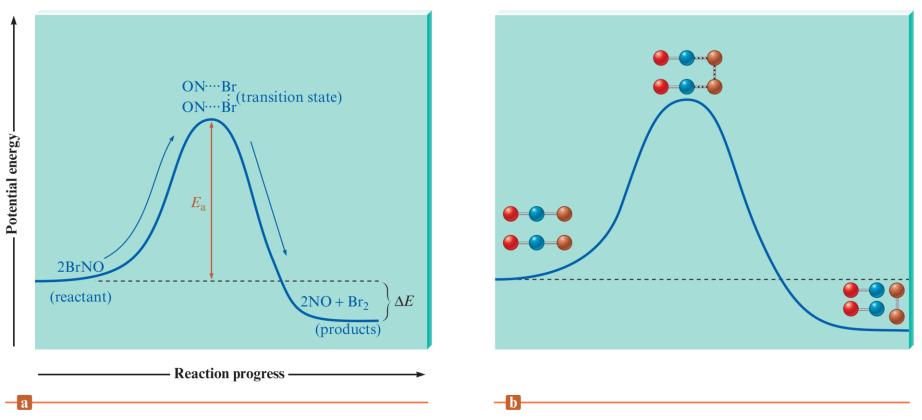
The second requirement is met

The mechanism is acceptable as both requirements are satisfied

Collision Model

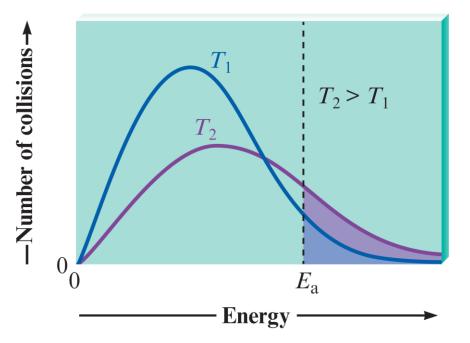
- States that a reaction requires the collision of molecules
 - Activation energy: Threshold energy that must be overcome to produce a chemical reaction $2BrNO(g) \longrightarrow 2NO(g) + Br_2(g)$
 - The energy comes from the kinetic energies possessed by the reacting molecules before the collision
 - Kinetic energy is changed into potential energy as the molecules are distorted during a collision to break bonds and rearrange the atoms into product molecules

Figure 12.10 - Activated Complex/Transition State



Relation between Effective Collisions and Temperature

 The fraction of effective collisions increases exponentially with temperature



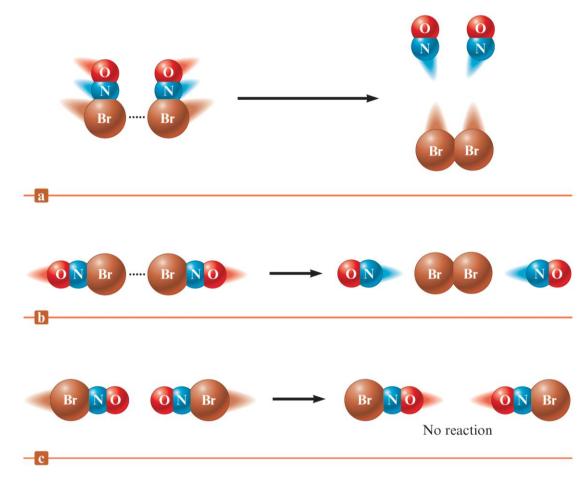
Copyright ©2017 Cengage Learning. All Rights Reserved.

Relation between Activation Energy and Number of Collisions

Number of collisions with the activation energy = (total number of collisions) $e^{-E_a/RT}$

- E_a Activation energy
- *R* Universal gas constant
- T Temperature in Kelvin
- $e^{-E_a/RT}$ Fraction of collisions with energy E_a or greater at temperature T

Figure 12.12 - Molecular Orientations



Requirements to be Satisfied for Reactants to Collide Successfully

- The collision energy must equal or exceed the activation energy
- The relative orientation of the reactants must allow the formation of any new bonds necessary to produce products

Rate Constant in Molecular Collision

- Represented as $k = zpe^{-E_a/RT}$
 - z Collision frequency
 - p Steric factor
 - Always lesser than 1
 - Reflects the fraction of collisions with effective orientations
 - e^{-Ea/RT} Fraction of collisions with sufficient energy to produce a reaction

Arrhenius Equation

 A modification of the rate constant equation for collision of molecules

$$k = Ae^{-E_{a}/RT}$$
 (12.9)

- A Frequency factor for the reaction
- Taking the natural logarithm of each side gives

$$\ln(k) = -\frac{E_{a}}{R} \left(\frac{1}{T}\right) + \ln(A)$$
(12.10)

Arrhenius Equation (Continued)

- Equation (12.10) is a linear equation of the type y
 = mx + b
 - y = ln(k)
 - $m = -E_{\alpha}/R = \text{slope}$
 - x = 1/T
 - b = ln(A) = intercept

Critical Thinking

- There are many conditions that need to be met to result in a chemical reaction between molecules
 - What if all collisions between molecules resulted in a chemical reaction?
 - How would life be different?

Interactive Example 12.7 - Determining Activation Energy I

 The following reaction was studied at several temperatures

 $2\mathrm{N}_{2}\mathrm{O}_{5}(g) \longrightarrow 4\mathrm{NO}_{2}(g) + \mathrm{O}_{2}(g)$

- Values of k were obtained
- Calculate the value of E_a for this reaction

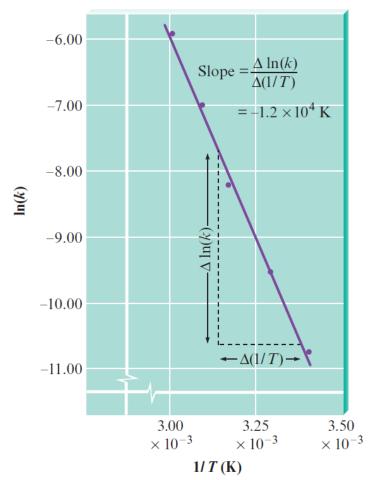
<i>Т</i> (°С)
20
30
40
50
60

Interactive Example 12.7 - Solution

 Calculate the values of ln(k) and 1/T and construct a plot

<i>T</i> (°C)	Т (К)	1/ <i>T</i> (K)	<i>k</i> (s ⁻¹)	ln(<i>k</i>)
20	293	$3.41 imes 10^{-3}$	$2.0 imes 10^{-5}$	-10.82
30	303	$3.30 imes 10^{-3}$	$7.3 imes10^{-5}$	-9.53
40	313	$3.19 imes 10^{-3}$	$2.7 imes10^{-4}$	-8.22
50	323	$3.10 imes 10^{-3}$	$9.1 imes10^{-4}$	-7.00
60	333	$3.00 imes 10^{-3}$	$2.9 imes 10^{-3}$	-5.84

Interactive Example 12.7 - Solution (Continued 1)



Interactive Example 12.7 - Solution (Continued 2)

Based on the plot

Slope =
$$\frac{\Delta \ln(k)}{\Delta \left(\frac{1}{T}\right)} = -1.2 \times 10^4 \text{ K}$$

Determine the value of E_a by solving the following equation

Slope =
$$\frac{-E_a}{R}$$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 12.7 - Solution (Continued 3)

The value of the activation energy is

$$E_a = -R(\text{slope}) = -(8.3145 \text{ J/K} \cdot \text{mol})(-1.2 \times 10^4 \text{ K})$$

= 1.0 × 10⁵ J/mol

Alternative Method to Determine E_a

- At temperature T_1 , where the rate constant is k_1 $\ln(k_1) = -\frac{E_a}{RT_1} + \ln(A)$
- At temperature T_2 , where the rate constant is k_2

$$\ln(k_2) = -\frac{E_a}{RT_2} + \ln(A)$$

Alternative Method to Determine *E*_a (Continued)

Subtracting the first equation from the second gives

$$\ln(k_{2}) - \ln(k_{1}) = \left[-\frac{E_{a}}{RT_{2}} + \ln(A) \right] - \left[-\frac{E_{a}}{RT_{1}} + \ln(A) \right]$$
$$= -\frac{E_{a}}{RT_{2}} + -\frac{E_{a}}{RT_{1}}$$

And

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$
(12.11)

Copyright ©2017 Cengage Learning. All Rights Reserved.

Critical Thinking

- Most modern refrigerators have an internal temperature of 45° F
 - What if refrigerators were set at 55° F in the factory?
 - How would this affect our lives?

Interactive Example 12.8 - Determining Activation Energy II

 The gas-phase reaction between methane and diatomic sulfur is given by the equation

 $CH_4(g) + 2S_2(g) \rightarrow CS_2(g) + 2H_2S(g)$

- At 550° C the rate constant for this reaction is 1.1
 L/mol s
- At 625° C the rate constant is 6.4 L/mol . s
- Using these values, calculate E_a for this reaction

Interactive Example 12.8 - Solution

Information available

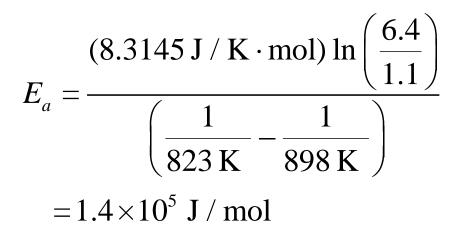
k (L/mol \cdot s)	<i>T</i> (°C)	Т (К)
$1.1 = k_1$ $6.4 = k_2$	550 625	$823 = T_1$ $898 = T_2$

Interactive Example 12.8 - Solution (Continued)

Substitute the values into Equation (12.11)

$$\ln\left(\frac{6.4}{1.1}\right) = \frac{E_a}{8.3145 \text{ J/K} \cdot \text{mol}} \left(\frac{1}{823 \text{ K}} - \frac{1}{898 \text{ K}}\right)$$

Solving for E_a gives



Copyright ©2017 Cengage Learning. All Rights Reserved.

Catalyst

- A substance that speeds up a reaction without being consumed itself
- Provides a new pathway with a lower activation energy for the reaction

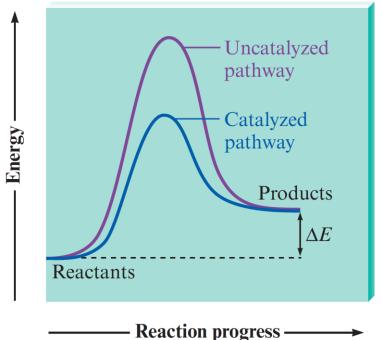
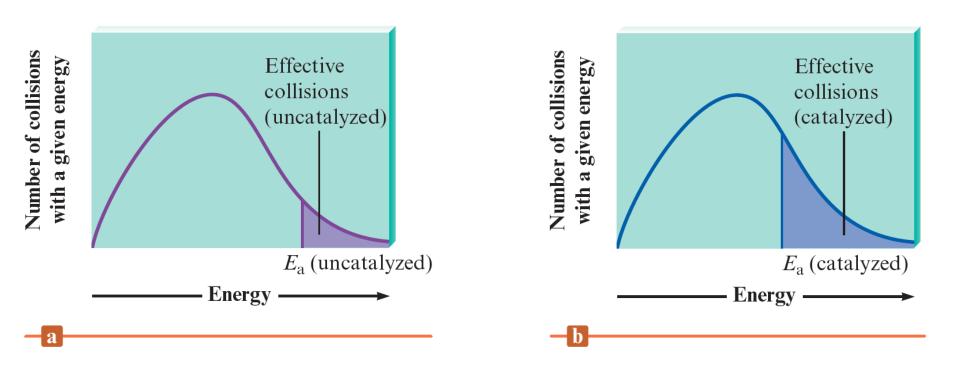


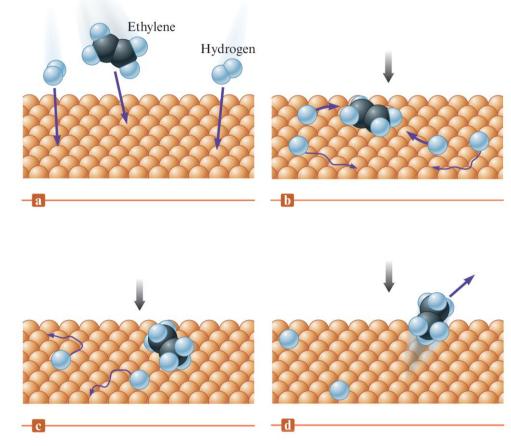
Figure 12.14 - Effect of a Catalyst on the Number of Reaction-Producing Collisions



Heterogeneous Catalysis

- Mostly involves gaseous reactants being adsorbed on the surface of a solid catalyst
 - Adsorption: Collection of one substance on the surface of another substance

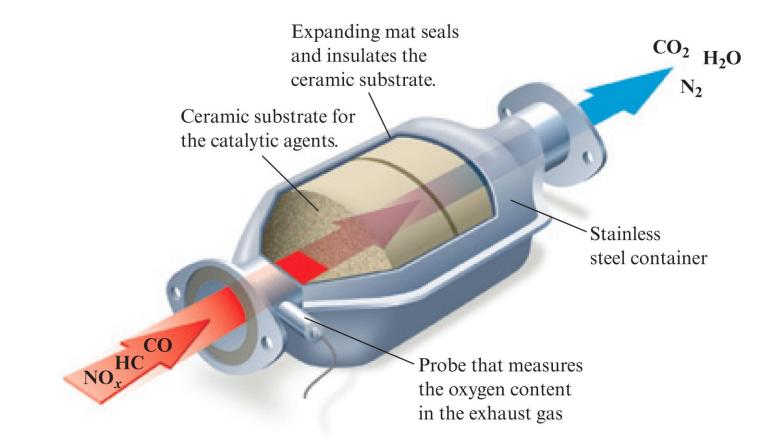
Figure 12.15 - Heterogeneous Catalysis of the Hydrogenation of Ethylene



Oxidation of Gaseous Sulfur Dioxide to Gaseous Sulfur Trioxide

- Dust particles and water droplets catalyze the reaction between SO₂ and O₂ in the air
- Negative aspects
 - Toxic air pollutants are formed
 - Acid rain is produced
- Positive aspects
 - Used in the manufacture of sulfuric acid
 - Utilized in the catalytic converters in automobile exhaust systems

Figure 12.16 - Use of Heterogeneous Catalysis in Exhaust Systems



Homogeneous Catalysis

- Exists in the same phase as the reacting molecules
- Consider the catalytic behavior of nitric oxide toward ozone
 - NO catalyzes ozone production in the troposphere
 - In the lower atmosphere, NO is produced in any hightemperature combustion process in the presence of N₂

 $N_2(g) + O_2(g) \longrightarrow 2NO(g)$

Homogeneous Catalysis (Continued 1)

 Significant amounts of NO escape into the atmosphere to react with O₂

$$2\mathrm{NO}(g) + \mathrm{O}_2(g) \longrightarrow 2\mathrm{NO}_2(g)$$

- NO₂ absorbs light and decomposes as follows $2NO_2(g) \xrightarrow{\text{Light}} NO(g) + O_2(g)$
- The oxygen atoms are very reactive and can combine to form ozone

$$O_2(g) + O(g) \longrightarrow O_3(g)$$

 Ozone is a powerful oxidizing agent that can react with other air pollutants to form toxic substances

Homogeneous Catalysis (Continued 2)

Summarizing the reactions

$$NO(g) + \frac{1}{2}O_{2}(g) \longrightarrow NO_{2}(g)$$
$$NO_{2}(g) \xrightarrow{\text{Light}} NO(g) + O(g)$$
$$O_{2}(g) + O(g) \longrightarrow O_{3}(g)$$
$$\frac{3}{2}O_{2}(g) \longrightarrow O_{3}(g)$$

Ozone

Homogeneous Catalysis (Continued 3)

 In the upper atmosphere, the presence of nitric oxide leads to the depletion of ozone

$$NO(g) + O_3(g) \longrightarrow NO_2(g) + O_2(g)$$
$$O(g) + NO_2(g) \longrightarrow NO(g) + O_2(g)$$
$$O(g) + O_3(g) \longrightarrow 2O_2(g)$$

 Depletion of the ozone layer increases the earth's exposure to ultraviolet radiation from the sun

Freons

- Group of stable, noncorrosive compounds that cause ozone layer depletion
 - Formerly used as refrigerants and as propellants in aerosol cans
 - Freon-12 (CCl₂F₂) migrates into the upper atmosphere and decomposes in the presence of high-energy light

$$\operatorname{CCl}_2F_2(g) \xrightarrow{\operatorname{Light}} \operatorname{CCl}F_2(g) + \operatorname{Cl}(g)$$

Freons (Continued)

 Chlorine atoms released during the decomposition of Freons catalyze the decomposition of ozone

$$Cl(g) + O_3(g) \longrightarrow ClO(g) + O_2(g)$$
$$O(g) + ClO(g) \longrightarrow Cl(g) + O_2(g)$$

 $O(g) + O_3(g) \longrightarrow 2O_2(g)$

- Banned by international agreement due to environmental concerns
 - Substitute compounds are now being used

