Biology

Concepts and Applications | 9e Starr | Evers | Starr

Chapter 21

Plant Evolution

21.1 How Did Plants Adapt To Life on Land?

- Plants evolved from green algae, and underwent an adaptive radiation on land
- Plants are embryophytes, which form a multicelled embryo on the parental body

- Structural adaptations
 - Waterproof cuticle with stomata
 - Stomata open and close to balance demands for water conservation and gas exchange with air outside the plant
 - Has internal vascular tissue

- Vascular tissues
 - Transport water/nutrients through a plant body
 - Help plants stand upright and branch
 - Reinforced by lignin (stiffens cell walls)
 - Xylem distributes water and minerals
 - Phloem distributes sugars made via photosynthesis
 - 90 percent of modern plant species have vascular tissues

art, © Cengage Learning; photo, Courtesy of © Professor T. Mansfield © Cengage Learning 2015

- Life cycle changes
 - Adapted vascular plants to life in drier habitats
 - Plant life cycles include two multicelled bodies
 - The haploid gametophyte
 - The diploid sporophyte
- The gametophyte dominates in earlyevolving lineages, but in most plants, the sporophyte is larger and longer lived

Animation: The importance of alternation of generations

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

- Pollen and seeds
 - Can be dispersed without water (pollen grains)
 - Are important adaptations that contribute to the success of seed plants
 - Allow seed plants to reproduce in dry places
 - Many seed features facilitate dispersal from the parent plant

- Two lineages of seed plants:
 - Gymnosperms were the first to evolve
 - Angiosperms make flowers and release their seeds inside a fruit

Animation: Evolutionary tree for plants

Please wait, loading

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

21.2 What Are Nonvascular Plants?

- Bryophyte
 - Member of an early plant lineage
 - Has a gametophyte-dominant life cycle
 - Refers to members of three separate lineages
 - Mosses
 - Hornworts
 - Liverworts

- Bryophytes (cont'd.)
 - Nonvascular (no xylem or phloem)
 - Their sperm swim through water droplets to eggs
 - Sporophyte remains attached to the gametophyte
 - Rhizoids attach a gametophyte to the soil or a surface

- Moses
 - Most diverse bryophytes
 - Includes about 15,000 species
 - Threadlike rhizoids hold the gametophyte in place
 - Unlike roots of vascular plants, rhizoids do not distribute water or nutrients; these resources must be absorbed across the gametophyte's leafy surface

- Moss life cycle
 - The leafy green part of a moss is the gametophyte
 - Supports a sporophyte (stalk and capsule)
 - Spores form by meiosis in the capsule and are released
 - Spores develop into gametophytes that produce eggs or sperm in gametangia at their tips

- Moss life cycle (cont'd.)
 - Sperm released from sperm-producing gametophytes swim through water to eggs of egg-producing gametophytes
 - Fertilization produces a zygote.
 - Zygote develops into a sporophyte while attached to its egg-producing parent

Animation: Moss life cycle

Please wait, loading

0%

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

- Peat mosses (Sphagnum)
 - Dominant plants in peat bogs
 - Cover hundreds of millions of acres in highlatitude regions of Europe, Asia, and North America
 - Have persisted for thousands of years
 - Peat is dried and burned as fuel

- Liverworts
 - Commonly grow in moist places
 - In most of the 6,000 species, the gametophyte is flattened and attaches to soil by rhizoids
- Hornworts
 - Named for a pointy, hornlike sporophyte
 - Sporophytes grow continually from their base, and can survive even after the death of the gametophyte

Dr. Annkatrin Rose, Appalachian State University

21.3 What Are Seedless Vascular Plants?

- Seedless vascular plants
 - Plants such as club mosses, horsetails, and ferns that have vascular tissue
 - Have flagellated sperm that swim to eggs;
 disperse by producing spores, not seeds

- Sporophytes
 - The larger, longer-lived phase of the life cycle
 - Typically, sporophyte roots and shoots grow from a horizontal stem, or rhizome
 - Tiny free-living gametophytes make flagellated sperm

- Ferns
 - Most diverse group of seedless vascular plants, produce spores in *sori*
 - · Cluster of spore-producing capsules on a fern leaf
- Many ferns grow as epiphytes
 - Plant that grows on another plant but does not harm it

- Five steps in the life cycle of a fern
 - The leafy form is the diploid sporophyte
 - Meiosis produces haploid spores on frond undersides
 - Spores are released; germinate/grow into tiny gametophytes that produce eggs and sperm

- Five steps in the life cycle of a fern (cont'd.)
 - Sperm swim to eggs and fertilize them, forming a zygote
 - Sporophyte develops attached to the gametophyte, but lives independently after the gametophyte dies

Animation: Fern life cycle

Please wait, loading

0%

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

CREDITS: (9A) © Klein Hubert/Peter Arnold, Inc.; (9B) © Gerald D. Carr; (9C) © William Ferguson; (9D) © Martin LaBar, www.flickr.com/photos/martinlabar.

D Club moss (Lycopodium)

21.4 How Have Vascular Plants Changed Over Time?

- The oldest fossils of vascular plants are spores that date to about 450 million years ago (late Ordovician period)
- Early vascular plants stood only a few centimeters high and had a simple branching pattern, with no leaves or roots
- By the early Devonian, taller species with a more complex branching pattern were common worldwide

- Forests of giant seedless vascular plants thrived during the Carboniferous period
 - Heat and pressure transformed the remains of these forests to coal

C Reprinted with permission from Elsevier

© Cengage Learning. All Rights Reserved.

- Rise of the seed plants
- Evolved in the late Devonian (365 mya)
- Cycads and ginkgos were among the earliest gymnosperm lineages
- Early angiosperms such as magnolias evolved while dinosaurs walked on Earth

- Seed plant sporophytes have pollen sacs, where microspores form and develop into male gametophytes (pollen grains)
- Sporophytes also have ovules, where megaspores form and develop into female gametophytes

21.5 What Are Gymnosperms?

- Gymnosperms
 - Vascular seed plants
 - Produce seeds on the surface of ovules
 - Seeds are "naked" (not inside a fruit)
 - Does not make flowers
 - Includes:
 - Conifers, cycads, ginkgos, and gnetophytes

- Conifers
 - Gymnosperm with nonmotile sperm
 - Ovules form on the surfaces of woody cones
 - Typically have needlelike or scalelike leaves
 - Tend to be resistant to drought and cold
 - Examples: pines, redwoods

- Ponderosa pine life cycle
 - Inside the ovule, a megaspore forms by meiosis and develops into a female gametophyte
 - Male cones hold pollen sacs where microspores develop into pollen grains

- Ponderosa pine life cycle (cont'd.)
 - Pollen grains are released; pollination occurs when one lands on an ovule, and the pollen grain germinates
 - It takes about a year for a pollen tube to grow through ovule tissue and deliver sperm to the egg

- Ponderosa pine life cycle (cont'd.)
 - When fertilization finally occurs, it produces a zygote
 - The zygote develops into an embryo sporophyte that, along with tissues of the ovule, becomes a seed
 - The seed is released, germinates, and grows and develops into a new sporophyte

Animation: Pine life cycle

Please wait, loading

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

- There is great Gymnosperm diversity
 - Cycads resemble palm trees and live mainly in the dry tropics and subtropics
 - Gingko is a tree native to China
 - Gnetophytes like *Ephedra* include woody vines, tropical trees and shrubs

Fletcher and Baylis/Science Source.

21.6 What Are Angiosperms?

- Angiosperms
 - Seed plants make flowers
 - Specialized reproductive shoot of a flowering plant
 - Flower structure can vary
 - Seed plants make fruits
 - Mature flowering plant ovary; encloses a seed or seeds
 - Largest seed plant lineage

- Flowers
 - Consists of modified leaves arranged in concentric whorls of sepals and petals
 - Stamens of a flower produce pollen
 - Eggs form in the female part of the flower (carpel)
 - Ovary at the base of the carpel holds one or more ovules

- Angiosperms
 - Flowering plants
 - Dominant plants in most land habitats
 - Ecologically important
 - Essential to human existence
 - Feed and shelter animals
 - Provide us with food, fabric, oils, medicines, drugs

- Flowers
 - Consists of modified leaves arranged in concentric whorls of sepals and petals
 - Stamens of a flower produce pollen
 - Eggs form in the female part of the flower (carpel)
 - Ovary at the base of the carpel holds one or more ovules

Animation: Monocot life cycle

Please wait, loading

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

- Two major lineages differ in seed structure and other traits:
 - Monocots include orchids, palms, lilies, and grasses
 - Eudicots include most herbaceous (nonwoody) plants such as tomatoes, cabbages, roses, poppies, most flowering shrubs and trees, and cacti

© Cengage Learning 2015

В

21.7 Why Are Angiosperms So Diverse and Widespread?

- Several factors contributed to angiosperm diversity
 - Accelerated life cycle compared to gymnosperms
 - Have a partnership with pollinators, animals that moves pollen
 - Birds, bats, butterflies and other insects
 - Animal-dispersed fruits
 - Hooks or spines stick to animal fur, bright colored fruits

Why Are Angiosperms So Diverse and Widespread? (cont'd.)

21.8 Saving Seeds

- Plant diversity is declining
 - Many valuable sources of food, medicine and other products could disappear
 - Need to sustain wild plants
 - Seeds can be stored in a seed vault

Saving Seeds (cont'd.)

jim Richardson/National Geographic Creative.