Biology

Concepts and Applications | 9e Starr | Evers | Starr

Chapter 2

Life's Chemical Basis

2.1 What Are the Basic Building Blacks of All Matter?

- Positively charged protons (p⁺) and uncharged neutrons are found in an atom's nucleus (core)
- Negatively charged *electrons* (e⁻) move around the nucleus
 - Charge: electrical property; opposite charges attract, and like charges repel

What Are the Basic Building Blacks of All Matter? (cont'd.)

What Are the Basic Building Blacks of All Matter? (cont'd.)

- A typical atom has about the same number of electrons and protons
- Atomic number: number of protons in the atomic nucleus
- Element: pure substance that consists only of atoms with the same number of protons
- Periodic table: tabular arrangement of all known elements by their atomic number

What Are the Basic Building Blacks of All Matter? (cont'd.)

© Cengage Learning. All Rights Reserved.

Isotopes and Radioisotopes

- Although all atoms of an element have the same number of protons, they can differ in the number of other subatomic particles
- Isotopes: forms of an element that differ in the number of neutrons their atoms carry
- Mass number: total number of protons and neutrons in the atomic nucleus

Isotopes and Radioisotopes (cont'd.)

- Radioisotope: isotope with an unstable nucleus
- Radioactive decay: process by which atoms of a radioisotope emit energy and/or subatomic particles when their nucleus spontaneously breaks up

Isotopes and Radioisotopes (cont'd.)

nucleus of ¹⁴C, with 6 protons, 8 neutrons nucleus of ¹⁴N, with 7 protons, 7 neutrons

- All isotopes of an element generally have the same chemical properties regardless of the number of neutrons in their atoms
- Radioisotopes can be used as tracers to study biological processes
 - Tracer: any substance with a detectable component

2.2 Why Do Atoms Interact?

- Electrons occupy different orbitals: volumes of space around an atom's nucleus
- Orbitals are filled from lower to higher energy
- The farther an electron is from the nucleus, the greater its energy

Why Do Atoms Interact? (cont'd.)

- An electron can move to a higher energy orbital if an input gives it a boost
 - Electron then immediately emits the extra energy and moves back down to the lower energy orbital

Why Do Atoms Interact? (cont'd.)

- A shell model helps us visualize how electrons populate atoms
- Nested "shells" correspond to successively higher energy levels
- Each shell includes all of the orbitals on one energy level

Why Do Atoms Interact? (cont'd.)

About Vacancies

 No vacancies: an atom's outermost shell is filled with electrons

Most stable state

- Vacancy: an atom's outermost shell has room for another electron
 - Chemically active; atoms interact with one another
 - Example: sodium atom has one electron in its outer (third) shell, which can hold eight

About Vacancies (cont'd.)

Cengage Learning. All Rights Reserved.

About Vacancies (cont'd.)

 Solitary atoms that have unpaired electrons are called *free radicals*

- Typically very unstable

- Atoms with an unequal number of protons and electrons are called *ions*
 - Carry a net (overall) charge

About Vacancies (cont'd.)

© Cengage Learning 2015

2.3 How Do Ions Interact in Chemical Bonds?

- An atom can get rid of vacancies by participating in a chemical bond with another atom
 - Chemical bond: attractive force that arises between two atoms when their electrons interact
 - Compound: molecule that has atoms of more than one element

How Do Ions Interact in Chemical Bonds? (cont'd.)

- Ionic bond: strong mutual attraction links ions of opposite charge
 - Ionically bonded sodium and chloride ions make up sodium chloride (NaCl; table salt)

© Cengage Learning. All Rights Reserved.

Α

- Ions retain their respective charges when participating in an ionic bond
 - Polarity: separation of charge into positive and negative regions
 - A NaCl molecule is polar because the chloride ion keeps a very strong hold on its extra electron
 - Electronegativity: measure of the ability of an atom to pull electrons away from other atoms

С

© Cengage Learning 2015

Covalent Bonds

- Covalent bond: two atoms share a pair of electrons
 - Formed between atoms with a small or no difference in electronegativity
 - Covalent bonds are often stronger than ionic bonds (but not always)

- Structural formulas: lines between atoms represent the number of covalent bonds
 - Example: H-H
 - H₂ has one covalent bond between the atoms
 - Example: O=O
 - A double bond links the two oxygen atoms
 - Example: N<u>=</u>N
 - A triple covalent bond links the two nitrogen atoms

TABLE 2.1

Cengage Learning. All Rights Reserved.

Ways of Representing Molecules

Common name:	Water	Familiar term.
Chemical name:	Dihydrogen monoxide	Describes elemental composition.
Chemical formula:	H ₂ O	Indicates unvarying proportions of elements. Subscripts show number of atoms of an element per molecule. The absence of a subscript means one atom.
Structural formula:	Н—О—Н	Represents each covalent bond as a single line between atoms.
Structural model:		Shows relative sizes and positions of atoms in three dimensions.
Shell model:	8 1	Shows how pairs of electrons are shared in covalent bonds.

- Covalent bonds in compounds are usually polar
- Atoms share electrons unequally in a polar covalent bond
 - Example: water molecules

2.4 What Are The Life Sustaining Properties of Water?

- Hydrogen bonding in water
 - Water has unique properties that arise from the two polar covalent bonds in each water molecule
 - In water, the oxygen atom carries a slight negative charge; the hydrogen atoms carry a slight positive charge

slight negative charge

Α

slight positive charge

© Cengage Learning 2015

- Hydrogen bonding in water (cont'd.)
 - The polarity of individual water molecules attracts them to one another
 - This type of interaction is called a *hydrogen* bond
 - Hydrogen bond: attraction between a covalently bonded hydrogen atom and another atom taking part in a separate polar covalent bond

a hydrogen bond

B

- Hydrogen bonding in water (cont'd.)
 - Hydrogen bonds form and break much more easily than covalent or ionic bonds
 - Collectively they are quite strong
 - Hydrogen bonds stabilize DNA and protein structures
 - Extensive hydrogen bonding among water molecules gives liquid water several special properties that make life possible

Water's Special Properties

- Water is an excellent solvent
 - Substances that dissolve easily in water are hydrophilic
 - Ionic solids, such as sodium chloride (NaCl), dissolve in water:
 - The slight positive charge on each hydrogen atom in a water molecule attracts negatively charged Cl⁻
 - The slight negative charge on the oxygen atom attracts positively charged Na⁺

- Hydrogen bonds among many water molecules are collectively stronger than an ionic bond between two ions
 - The solid dissolves as water molecules tug the ions apart and surround each one

- Water is an excellent solvent (cont'd.)
 - Salt: releases ions other than H⁺ and OH⁻ when it dissolves in water (e.g., NaCl)
 - Solute: a dissolved substance
 - Solution: uniform mixture of solute completely dissolved in solvent
 - Chemical bonds do not form between molecules of solute and solvent
 - Nonionic solids (e.g., sugars) dissolve easily in water due to hydrogen bonding with water

- Water is an excellent solvent (cont'd.)
 - Substances that resist dissolving in water are *hydrophobic* (e.g., oils)
 - Oils consist of nonpolar molecules, and hydrogen bonds do not form between nonpolar molecules and water

- Water has cohesion
 - Cohesion: tendency of molecules to resist separating from one another
 - Water has cohesion because hydrogen bonds collectively exert a continuous pull on its individual molecules

- Water has cohesion (cont'd.)
 - Cohesion takes energy
 - Evaporation (transition of a liquid to a vapor) is resisted by hydrogen bonding among water molecules

- Water stabilizes temperature
 - Temperature: measure of molecular motion
 - Because of hydrogen bonding, it takes more heat to raise the temperature of water compared with other liquids
 - Below 0°C (32°F), water molecules become locked in the bonding pattern of ice
 - Sheets of ice that form on the surface of ponds, lakes, and streams insulate the water
 - Protects aquatic organisms during cold winters

top, Vicki Rosenberg, www.flickr.com/photots/roseofredrock; bottom, C Cengage Learning.

2.5 Why Are Hydrogen Ions Important in Biological Systems?

- When water is liquid, some of its molecules spontaneously separate into hydrogen ions (H⁺) and hydroxide ions (OH⁻)
- These ions can combine again to form water:

- Concentration: amount of solute per unit volume of solution
- pH: measure of the number of hydrogen ions in a fluid
- Base: accepts hydrogen ions in water
 Above pH 7
- Acid: releases hydrogen ions in water
 - Below pH 7

art: © Cengage Learning 2015; photos: © JupiterImages Corporatio

 Buffer: set of chemicals that can keep the pH of a solution stable by alternately donating and accepting ions that contribute to pH

- The fluids inside cells stay within a consistent range of pH because they are buffered
- Most biological molecules can function properly only within a narrow range of pH
 - Buffer failure can be catastrophic in a biological system

- Burning fossil fuels such as coal releases sulfur and nitrogen compounds that affect the pH of rain
 - Rainwater is not buffered
 - In places with a lot of fossil fuel emissions, the rain and fog can be more acidic than vinegar

 The corrosive effects of acid rain is visible in urban areas

N. K. Fletcher/Science Source

- Acid rain drastically changes the pH of water in soil, lakes, and streams
- Such changes can overwhelm the buffering capacity of fluids inside organisms, with lethal effects

2.6 Mercury Rising

- Mercury is a naturally occurring element
- Most of it is safely locked away in rocks
 - Volcanic activity and human activity release it into the atmosphere

Mercury Rising (cont'd.)

- Microbes combine airborne mercury with carbon to form methylmercury
 - Unlike mercury alone, methylmercury easily crosses skin and mucous membranes
- When mercury enters the body, it damages the nervous system, brain, kidneys, and other organs

Mercury Rising (cont'd.)

- It takes months or years for mercury to be cleared from the body
 - The toxin can build up to high levels if even small amounts are ingested on a regular basis
- Large predatory fish have a lot of mercury
 - U.S. Environmental Protection Agency recommends that adult humans ingest less than 0.1 microgram of mercury per kilogram of body weight per day

Mercury Rising (cont'd.)

Brian J. Skerry/National Geographic Creative.

© Cengage Learning 2015