Biology

Concepts and Applications | 9e Starr | Evers | Starr

Chapter 17

Processes of Evolution

© Cengage Learning 2015

17.1 What is Microevolution?

- Individuals of a population share morphological, physiological, and behavioral traits with a heritable basis
- Variations within a population arise from different alleles of shared genes
 - Dimorphic: a trait with only two forms
 - Polymorphic: traits with more than two distinct forms

Variation in shared traits among individuals is mainly an outcome of variations in alleles that influence those traits.

CREDITS: (1) background, © David McIntyre/Photographer's Direct; inset far left, © Roderick Hulsbergen/ http://www.photography.euweb.nl; all others, © Jupiter/Images Corporation. © Cengage Learning 2015

TABLE 17.1

Sources of Variation in Traits Among Individuals of a Species

Genetic Event	Effect
Mutation	Source of new alleles
Crossing over at meiosis I	Introduces new combinations of alleles into chromosomes
Independent assortment at meiosis I	Mixes maternal and paternal chromosomes
Fertilization	Combines alleles from two parents
Changes in chromosome number or structure	Often dramatic changes in structure and function

- Mutations
 - The original source for new alleles.
 - Lethal mutation
 - Mutation that drastically alters phenotype
 - Causes death
 - Neutral mutation
 - A mutation that has no effect on survival or reproduction

- Mutations (cont'd.)
 - Occasionally, a change in the environment favors a mutation that had previously been neutral or even somewhat harmful
 - Through natural selection, a beneficial mutation tends to increase in frequency in a population over generations
 - Mutations are the source of Earth's staggering biodiversity

• Allele frequencies

– All alleles in a population form a gene pool

- Changes in the allele frequencies of a population are called microevolution
 - Occurs constantly by:
 - Mutation
 - Natural selection
 - Genetic drift
 - Gene flow

17.2 How Do We Know When A Population Is Evolving?

- Genetic equilibrium
 - A theoretical reference point
 - Occurs when the allele frequencies of a population do not change
 - Requires five conditions that are never met in nature, so natural populations are never in genetic equilibrium

- Five theoretical conditions of genetic equilibrium:
 - 1. Mutations never occur
 - 2. Population is infinitely large
 - 3. Population is isolated from all other populations of the species (no gene flow)
 - 4. Mating is random
 - 5. All individuals survive and produce the same number of offspring

- Hardy-Weinberg Law
 - Developed a simple formula that can be used to track whether a population of any sexually reproducing species is in a state of genetic equilibrium

- Consider a hypothetical gene that encodes a blue pigment in butterflies:
 - Two alleles of this gene, *B* and *b*, are codominant
 - A butterfly homozygous for the *B* allele (*BB*) has dark-blue wings
 - A butterfly homozygous for the *b* allele (*bb*) has white wings
 - A heterozygous butterfly (*Bb*) has mediumblue wings

- The hypothetical gene (cont'd.)
 - At genetic equilibrium, the proportions of the wing-color genotypes are:

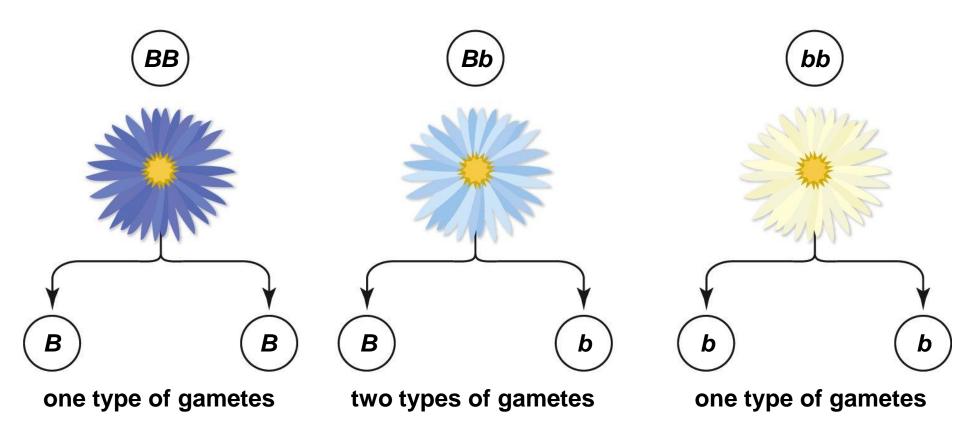
 $p^{2}(BB) + 2pq(Bb) + q^{2}(bb) = 1.0$

where *p* and *q* are the frequencies of alleles *B* and *b*

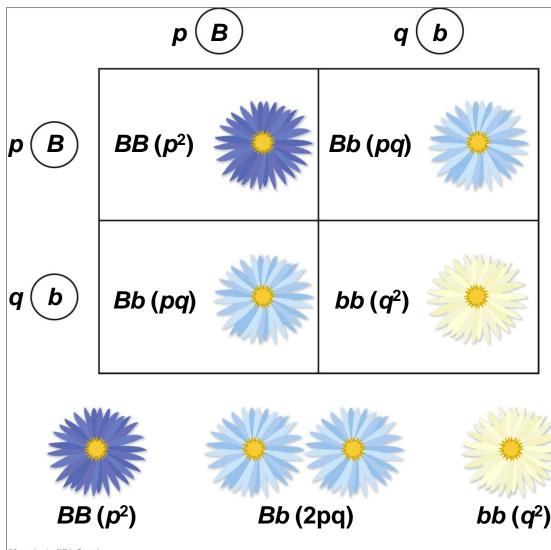
- The Hardy–Weinberg equilibrium equation
 - Defines the frequency of a dominant allele (B) and a recessive allele (b) for a gene that controls a particular trait in a population
 - Frequencies of *B* and *b* must add up to 1.0
 - Example: If *B* occupies 90% of the loci, then b must occupy the remaining 10 percent
 - No matter what the proportions:

$$p + q = 1.0$$

- Hardy-Weinberg (cont'd.)
 - Paired alleles assort into different gametes
 - The genotypes possible in the next generation are *BB*, *Bb*, and *bb*
 - The frequencies of the three genotypes add up to 1.0


$$p^2 + 2pq + q^2 = 1.0$$

- Hardy-Weinberg (cont'd.)
 - If 1,000 individuals each produces two gametes:
 - 490 BB individuals make 980 B gametes
 - 420 *Bb* individuals make 420 *B* and 420 *b* gametes
 - 90 bb individuals make 180 b gametes


- Hardy-Weinberg (cont'd.)
 - The frequency of alleles *B* and *b* among 2,000 gametes:

 $B(p) = (980 + 420) \div 2,000$ alleles $= 1,400 \div 2,000 = 0.7$ $B(q) = (180 + 420) \div 2,000$ alleles $= 600 \div 2,000 = 0.3$

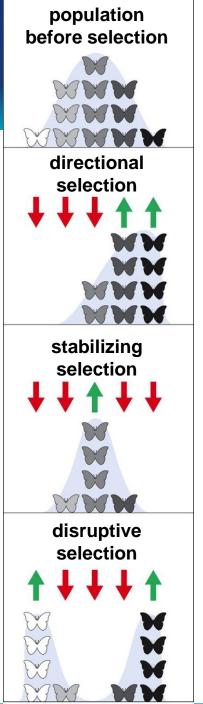
- If the population size stays constant at 1,000, there will be 490 BB, 420 Bb, and 90 bb individuals
- Allele frequencies for dark-blue, mediumblue, and white wings are the same as they were in the original gametes – the population is not evolving

Cengage Learning. All Rights Reserved.

© Cengage Learning 2015

Cengage Learning. All Rights Reserved

- Researchers use the Hardy–Weinberg formula to estimate the frequency of carriers of alleles that cause genetic traits and disorders
 - Example: Hereditary hemochromatosis (HH) in Ireland
 - If the frequency of the autosomal recessive allele that causes HH is q = 0.14, then p = 0.86
 - The carrier frequency (2pq) is calculated to be about 0.24


17.3 How Do Allele Frequencies Change?

- Different patterns of natural selection occur based on:
 - Selection pressures
 - Organisms involved
 - Three modes of natural selection

How Do Allele Frequencies Change? (cont'd.)

- Modes of natural selection
 - Directional selection shifts the range of variation in traits in one direction
 - Stabilizing selection favors intermediate forms of a trait
 - Disruptive selection favors forms at the extremes of a range of variation

How Do Allele Frequencies Change? (cont'd.)

© Cengage Learning. All Rights Reserved.

© Cengage Learning 2015

17.4 What is the Effect of Directional Selection?

- Directional selection
 - Shifts an allele's frequency in a consistent direction
 - Forms at one end of a range of phenotypic variation
 - Becomes more common over time
 - Bell-shaped curves indicate continuous variation in a butterfly wing-color trait

ANIMATION: Directional selection

Please wait, loading

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

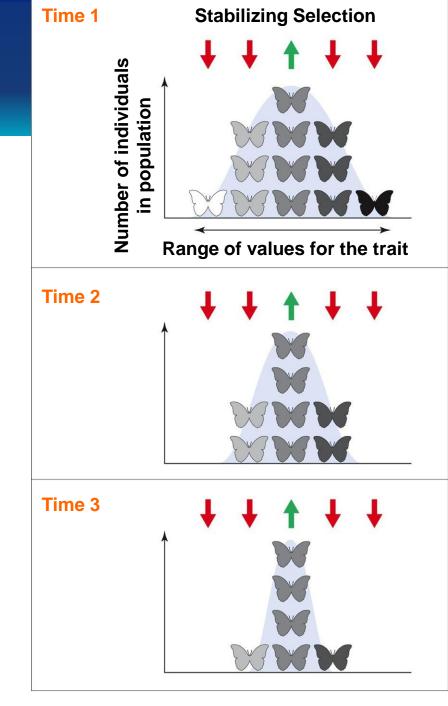
© Cengage Learning 2015

- Peppered moths
 - The peppered moth's coloration camouflages it from predatory birds
 - When the air was clean, trees were light-colored, and so were most peppered moths
 - When smoke from coal-burning factories changed the environment, predatory birds ate more white moths – selection pressure favored darker moths
 - By 1850s, dark-colored moths were more common

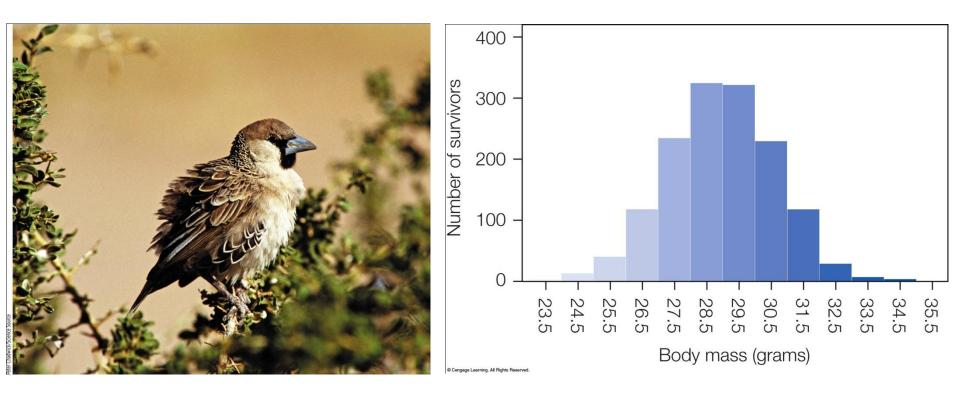
B

J. A. Bishop, L. M

- Wafarin-resistant rats
 - Rats thrive there are people
 - Wafarin became popular in 1950s
 - Spreading poison exerts directional selection
 - Exposure caused 10 percent of urban rats to become resistant to Wafarin by 1980s



© Rollin Verlinde/Vilda.


© Cengage Learning 2015

17.5 What Types Of Natural Selection Favor Intermediate or Extreme Forms of Traits?

- Stabilizing selection
 - Also called balancing selection
 - Tends to preserve the midrange phenotypes in a population
 - Mode of natural selection in which intermediate forms of a trait are favored over extremes

- Sociable weavers
 - The body weight of sociable weavers is subject to stabilizing selection
 - Body weight is a trade-off between risks of starvation and predation
 - Leaner birds do not store enough fat to avoid starvation
 - Predators select against birds of high body weight
 - Birds of intermediate weight have the selective advantage

- Disruptive selection
 - Mode of natural selection that favor forms of a trait at both ends of a range
 - Midrange forms are eliminated
 - Intermediate forms are selected against

ANIMATION: Disruptive selection

Please wait, loading

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

- African seedcrackers
 - Dimorphism in bill size results from competition for two types of food in the dry season
 - Small-billed birds are better at opening soft seeds, but large-billed birds are better at cracking hard seeds
 - Conditions favor birds with bills that are either 12 mm wide or wider than 15 mm
 - Birds with bills of intermediate size are selected against

ANIMATION: Disruptive selection among African finches

Please wait, loading

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

17.6 How Does Natural Selection Maintain Diversity?

- Selection pressures that operate on natural populations are complex; an allele may be adaptive in one circumstance but harmful in another
- Any mode of natural selection may maintain two or more alleles in a population

- Sexual selection
 - Mode of natural selection in which some individuals of a population out-reproduce others because they are better at securing mates
 - The most adaptive forms of a trait are those that help individuals defeat same-sex rivals for mates, or are the ones most attractive to the opposite sex

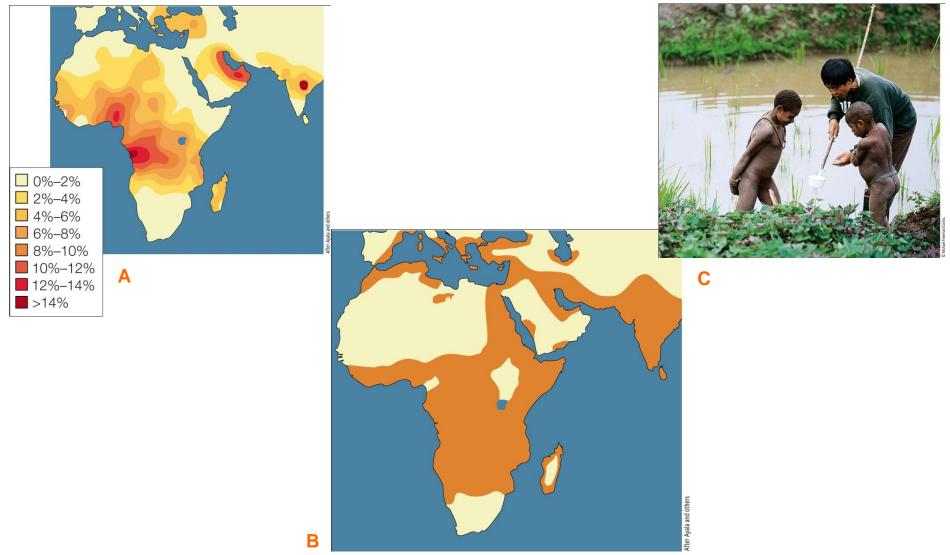
- Sexual dimorphism
 - Males and females are different in size or another aspect of their appearance
 - Individuals (often males) are more:
 - Colorful
 - Larger
 - More aggressive

ngo Arndt/Nature Picture Library

© Cengage Learning 2015

ruce Beehler

© Cengage Learning 2015



Minden Pictures/SuperStock.

- Maintaining multiple alleles
 - Balanced polymorphism
 - Maintenance of two or more alleles for a trait at high frequency in a population as a result of natural selection against homozygotes
 - Example: the mate preferences of female Drosophila flies
 - Frequency-dependent selection
 - The adaptive value of a form of a trait depends on its frequency in the population

- Malaria and sickle-cell anemia
 - A mutation in the normal beta globin chain of hemoglobin (*HbA*) causes sickle-cell anemia
 - Individuals homozygous for the mutated HbS allele often die young
 - The HbS allele persists at high frequencies in tropical regions of Africa because HbA/HbS heterozygotes are more likely to survive than HbA/HbA homozygotes

- Malaria and sickle-cell anemia (cont'd.)
 - In tropical and subtropical regions mosquitoes transmit the parasitic protist, *Plasmodium*, that causes malaria
 - HbA/HbS heterozygotes-infected red blood cells sickle
 - The abnormal shape brings cells to attention of immune system, which destroys them and the parasites they harbor

17.7 What Mechanisms Other Than Natural Selection Affect Allele Frequencies?

Genetic drift

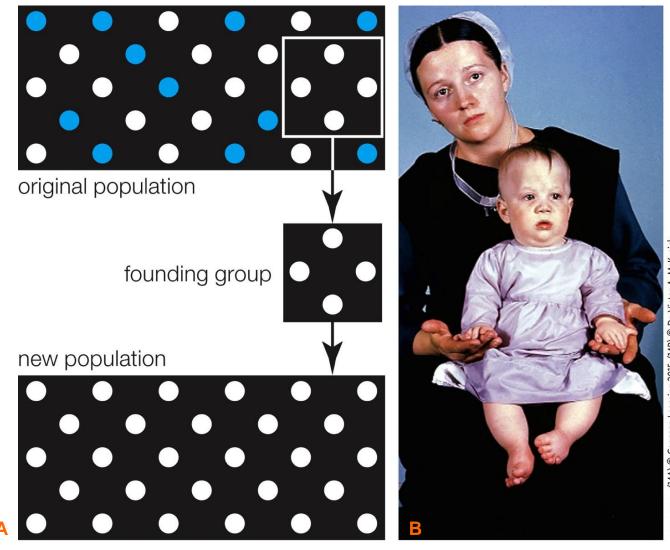
- Random change in allele frequencies
- Can lead to loss of genetic diversity by causing alleles to become *fixed*
 - An allele for which all members of a population are homozygous
 - Especially true in small populations
- The larger the population, the smaller the impact of random changes in allele frequencies

- Genetic drift
 - Example: Allele X occurs at a 10% frequency
 - In a population of 10, only one person carries the allele, and if that person dies, the allele is lost
 - In a population of 100, all 10 people who carry the allele would have to die for the allele to be lost

ANIMATION: Simulation of genetic drift

Please wait, loading

0%


To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

- Genetic drift can be dramatic when a few individuals rebuild a population or start a new one
 - Example: Hunting reduced an elephant seal population to 20; the population is now homozygous at every gene
- Bottleneck
 - Drastic reduction in population size so severe that it reduces genetic diversity

- Founder effect and inbreeding
 - Change in allele frequencies that occurs when a small number of individuals establish a new population

- Ellis-van Creveld syndrome
 - Caused by a recessive allele common in the Old Order Amish of Lancaster County, PA
 - Characterized by dwarfism, polydactyly, and heart defects

скерітs: (14A) © Cengage Learning 2015; (14B) © Dr. Victor A. McKusick

- Gene flow: individuals, along with their alleles, move into and out of populations
 - Stabilizes allele frequencies, so it counters the effects of mutation, natural selection, and genetic drift that tend to occur within a population
 - Example: blue jays move acorns, and their alleles, among populations of oak trees that would otherwise be genetically isolated

17.8 How Do Species Attain and Maintain Separate Identities?

- Speciation: one of several processes by which new species arise
- Reproductive isolation
 - Absence of gene flow between populations
 - Always part of speciation

ANIMATION: Reproductive isolating mechanisms

Please wait, loading

0%

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

How Do Species Attain and Maintain Separate Identities? (cont'd.)

- Reproductive isolation
 - Gene flow does not occur between populations
 - Different genetic changes accumulate
 - Reinforces differences between diverging populations
 - If pollination or mating cannot occur, or if zygotes cannot form, the isolation is prezygotic
 - If hybrids form but are unfit or infertile, the isolation is postzygotic

How Do Species Attain and Maintain Separate Identities? (cont'd.)

- Seven mechanisms of reproductive isolation
 - Temporal isolation
 - Some populations can't interbreed because the timing of their reproduction differs
 - Mechanical isolation
 - Size or shape of an individual's reproductive parts prevent it from mating with members of another population

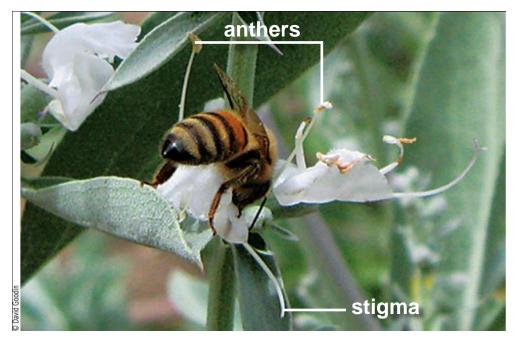
How Do Species Attain and Maintain Separate Identities? (cont'd.)

- Ecological isolation
 - Populations adapted to different microenvironments in the same region may be physically separated
- Behavioral isolation
 - In animals, behavioral differences can stop gene flow between related species

How Do Species Attain and Maintain Separate Identities? (cont'd.)

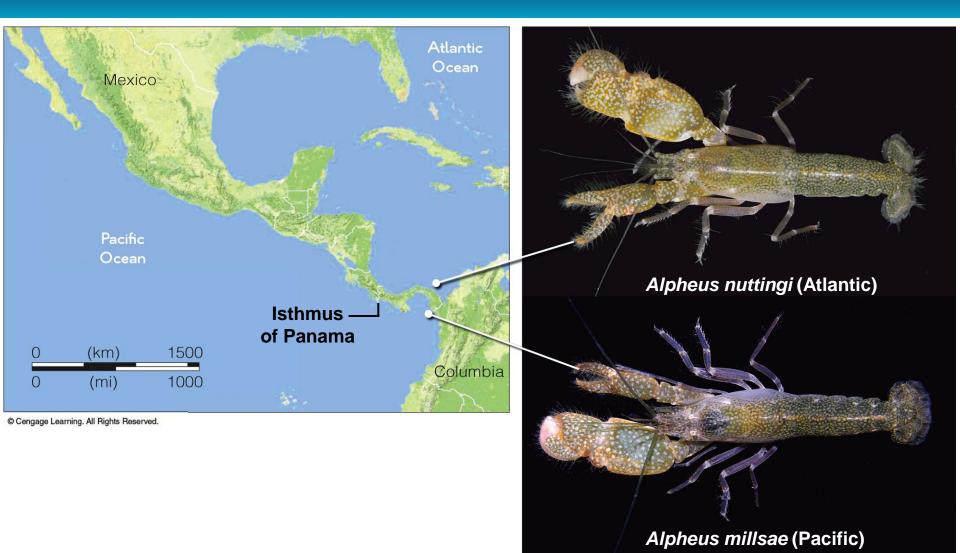
- Gamete incompatibility
 - Even if gametes of different species meet, they often have molecular incompatibilities that prevent them from fusing
 - Primary speciation route of animals that release free-swimming sperm in water
- Hybrid inviability
 - If genetic incompatibilities disrupt development, a hybrid embryo may die, or hybrid offspring that survive may have reduced fitness (e.g., ligers)

How Do Species Attain and Maintain Separate Identities? (cont'd.)


– Hybrid sterility

• Some interspecies crosses produce robust but sterile offspring (e.g., mules)

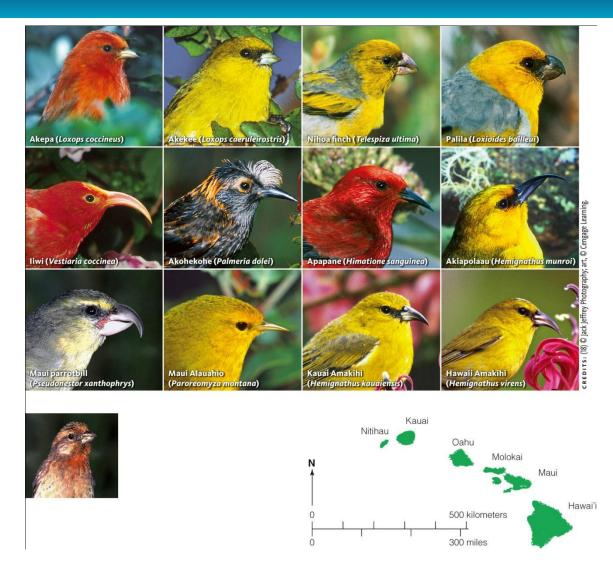
How Do Species Attain and Maintain Separate Identities? (cont'd.)



С

17.9 What is Allopatric Speciation?

- Allopatric speciation
 - Speciation pattern in which a physical barrier that separates members of a population ends gene flow between them
 - Geographic barrier arises
 - Genetic divergences then give rise to new species


- Geographic barrier can block gene flow
 - Depends on how an organism travels
 - e.g., by swimming, walking, or flying
 - How it reproduces
 - e.g., by internal fertilization or by pollen dispersal
- Example:
 - When the Isthmus of Panama formed, it cut off gene flow among populations of aquatic organisms in the Pacific and Atlantic oceans

© Cengage Learning 2015

- Speciation in archipelagos
 - Archipelagos are isolated island chains formed by volcanoes, such as the Hawaiian and Galápagos Islands
 - Archipelagos were populated by a few individuals of mainland species whose descendants diverged over time
 - Selection pressures within and between the islands can foster even more divergences

- The first birds to colonize the Hawaiian Islands found a near absence of competitors and predators and an abundance of rich and vacant habitats, which encouraged rapid speciation
 - Honeycreepers, unique to the Hawaiian Islands, have specialized bills and behaviors adapted to feed on certain insects, seeds, fruits, nectar, or other foods

17.10 Can Speciation Occur Without a Physical Barrier to Gene Flow?

- Sympatric speciation
 - Populations sometimes speciate even without a physical barrier that bars gene flow between them
 - Can occur instantly with a change in chromosome number – many plants are polyploid (e.g., wheat)

Can Speciation Occur Without a Physical Barrier to Gene Flow? (cont'd.)

- Examples of sympatric speciation
 - Lake Victoria cichlids (sexual selection)
 - In the same lake, female cichlids of different species visually select and mate with brightly colored males of their own species
 - Warblers around the Tibetan plateau (behavioral isolation)
 - Two populations overlap in range, but don't interbreed because they don't recognize one another's songs

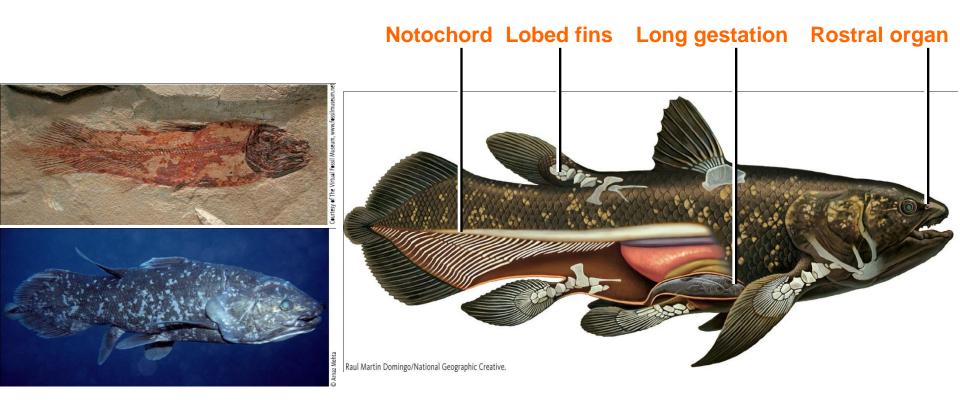
ANIMATION: Sympatric Speciation in Wheat

Please wait, loading

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

Can Speciation Occur Without a Physical Barrier to Gene Flow? (cont'd.)


gage Lear

Can Speciation Occur Without a Physical Barrier to Gene Flow? (cont'd.)

- Parapatric speciation: may occur when one population extends across a broad region with diverse habitats
 - Example: Two species of velvet walking worm with overlapping habitats in Tasmania
 - Where they interbreed, their hybrids are sterile

17.11 What is Macroevolution?

- Macroevolution
 - Evolutionary patterns on a larger scale
- There are five patterns of macroevolution
 - Stasis
 - Exaptation
 - Mass extinction
 - Adaptive radiation
 - Coevolution

- Stasis
 - A lineage which persists for millions of years with little or no change
 - Example: Coelacanth
 - Ancient lobe-finned fish
 - Thought to be extinct
 - Rediscovered in 1938

- Exaptation
 - Adaptation of an existing structure for a completely different purpose; a major evolutionary novelty
 - Example: Feathers on modern bird used for flight evolved from feather on dinosaurs used for insulation

- Mass extinction
 - Extinct: refers to a species that has been permanently lost
 - Simultaneous losses of many lineages
 - 99 percent of all species that have ever lived are now extinct
 - Fossil record indicated that there have been more than 20 mass extinctions
 - Five catastrophic events in which the majority of species on Earth disappeared

- Adaptive radiation
 - Lineage rapidly diversifies into several new species
 - A burst of genetic divergences
 - Can occur after individuals colonize a new environment that has a variety of different habitats with few or no competitors
 - Can involve a key innovation
 - A new trait that allows its bearer to exploit a habitat more efficiently or in a novel way

- Coevolution
 - Joint evolution of two closely interacting species
 - Each is a selective agent for traits of the other
 - Each adapts to changes in the other
 - Over evolutionary time, two species may become so interdependent that they can no longer survive without one another
 - e.g., the large blue butterfly (*Maculinea arion*) and red ant (*Myrmica sabuleti*)

remy Thomas/ Natural Visio

- Evolutionary theory
 - Biologists disagree about how macroevolution occurs
 - Dramatic jumps in morphology may be the result of mutations in homeotic or other regulatory genes
 - Macroevolution may be an accumulation of many microevolutionary events, or it may be an entirely different process

17.12 Why Do We Study Evolutionary History?

- Instead of trying to divide the diversity of living organisms into a series of taxonomic ranks, most biologists are now focusing on evolutionary connections
- Phylogeny
 - Grouping species on the basis of their shared characters
 - Like a genealogy

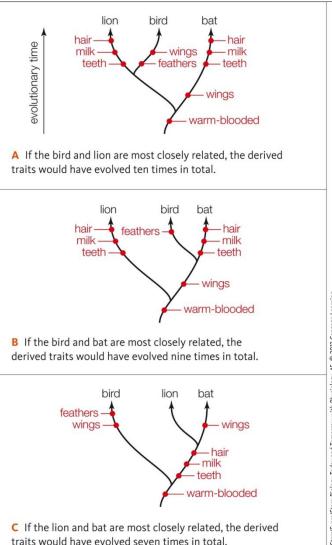

Why Do We Study Evolutionary History? (cont'd)

TABLE 17.2

Examples of Characters

	Bird	Bat	Lion
Warm-blooded	Y	Y	Y
Hair	Ν	Y	Y
Milk	Ν	Y	Y
Teeth	Ν	Y	Y
Wings	Y	Y	N
Feathers	Y	Ν	Ν

Cengage Learning. All Rights Reserved.

Why Do We Study Evolutionary History? (cont'd)

- Cladistics
 - Method of determining evolutionary relationships
 - Group species into *clades* based on shared characters
 - Results in a cladogram
 - A type of evolutionary tree used to visualize evolutionary patterns

ANIMATION: Interpreting a cladogram

Please wait, loading

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

17.13 How Can We Use What We Learn About Evolutionary History?

- Hawaiian honeycreepers illustrate how evolution works
 - Isolation that spurred honeycreepers' adaptive radiations also ensured they had no built-in defenses against predators or diseases from the mainland
 - Specializations became hindrances when habitats suddenly changed or disappeared

How Can We Use What We Learn About Evolutionary History? (cont'd.)

© Cengage Learning 2015

17.4 Directional Selection

- Superbad superbugs
 - Are we overutilizing antibiotics?
 - Bacterial species are able to survive after exposure to antibiotics
 - Pathogens resistant to multiple antibiotics are considered multidrug resistant (MDR) or superbugs
 - Serious and growing phenomenon in contemporary medicine

Directional Selection (cont'd.)

SAM ABELL/National Geographic Creative.