

10.1 What Is Gene Control?

- A typical cell in your body uses only about
 10 percent of its genes at one time
 - Some genes affect structural features and metabolic pathways and are expressed in many cell types
 - Others genes are expressed only by certain subsets of cells (e.g., globin in RBCs)
 - Control over gene expression allows cells to respond to changes in their environment

Gene Expression Control

 The "switches" that turn a gene on or off are molecules or processes that trigger or inhibit the individual steps of its expression

ANIMATION: Controls of eukaryotic gene expression

Please wait, loading

To play movie you must be in Slide Show Mode

PC Users: Please wait for content to load, then click to play

Mac Users: **CLICK HERE**

Transcription

- Transcription factors: bind directly to DNA and affect whether and how fast a gene is transcribed
 - Repressors: bind to promoters or silencers to shut off or slow down transcription
 - Operators: prokaryotic silencers
 - Activators: recruit RNA polymerase to a promoter region to enhance transcription
 - Enhancer: distant DNA binding site for eukaryotic activators

Transcription (cont'd.)

Journal of Biosciences, Volume 36, Number 3, August 2011, Indian Academy of Sciences, Springer.

Transcription (cont'd.)

- Chromatin structure affects transcription
 - Only DNA regions that are unwound from histories are accessible to RNA polymerase
 - Adding acetyl groups (—COCH₃) to a histone loosens the DNA
 - Promotes transcription
 - Adding methyl groups (—CH3) to a histone tightens the DNA
 - Inhibits transcription

mRNA Processing and Transport

- Delaying the post-transcriptional modifications of mRNA delays translation by preventing mRNA from reaching the nucleus
 - mRNA must first be spliced, capped, and finished with a poly-A tail before leaving the nucleus

mRNA Processing and Transport (cont'd.)

- Control over post-transcriptional modification can affect the form of a protein
 - Example: alternative splicing of mRNA by different cell types
- mRNAs are delivered to organelles or specific regions of cytoplasm via zip codes
 - This allows translation of an mRNA close to where its protein product is being used

Translation

- An mRNA's sequence affects translation
 - A cap on an mRNA zip code sequence prevents translation until mRNA has reached its final destination
 - mRNA stability alters translation rates and is affected by base sequence, the length of its poly-A tail, and bound proteins

Translation (cont'd.)

- In eukaryotes, translation of a particular mRNA can be shut down by tiny bits of noncoding RNA called microRNAs
 - microRNA: complementary in sequence to part of an mRNA
 - Expression of a microRNA results in the destruction of all mRNA complementary to it via the process of RNA interference

Translation (cont'd.)

- Double-stranded RNA is also a factor in control over translation in prokaryotes
 - Bacteria can shut off translation of a particular mRNA by expressing an antisense (complementary) RNA strand
 - With double-stranded RNA, ribosomes cannot initiate translation

Post-Translational Modification

- Many newly synthesized polypeptide chains must be modified before they become functional
 - Example: some enzymes become active only after they have been phosphorylated
- Post-translational modifications inhibit, activate, or stabilize many molecules

10.2 How Do Genes Control Development in Animals?

- As an animal embryo develops, its cells differentiate and form tissues, organs, and body parts
 - Driven by cascades of master gene expression
- The products of master genes affect the expression of many other genes
 - Final outcome is the completion of an intricate task such as the formation of an eye

How Do Genes Control Development in Animals? (cont'd.)

- Orchestration of gene expression during development:
 - Maternal mRNAs are delivered to opposite ends of an unfertilized egg as it forms
 - These mRNAs are translated only after the egg is fertilized
 - Protein products diffuse away, forming gradients that span the entire developing embryo

How Do Genes Control Development in Animals? (cont'd.)

- Orchestration of gene expression during development (cont'd.):
 - The nucleus turns on master genes based on its position relative to the gradient proteins
 - Master gene products also form gradients, further influencing which additional master genes the nucleus will turn on
 - Eventually, the products of master genes cause undifferentiated cells to differentiate, and specialized structures to form

How Do Genes Control Development in Animals? (cont'd.)

Α

C

Homeotic Genes

- A homeotic gene is a master gene that governs the formation of a body part such as an eye, leg, or wing
- Animal homeotic genes encode transcription factors with a homeodomain
 - Region of about sixty amino acids that bind directly to a promoter

- Homeotic genes are often named for what happens when a mutation alters their function
 - Examples in the fruit fly:
 - Antennapedia gene
 - Groucho gene
 - Eyeless gene

eft, © Visuals Unlimited; right, © jürgen Berger, Max-Planck-Institut for Developmental Biology, Tübingen

В

(

© Cengage Learning 2015

- Homeotic genes evolved in the most ancient eukaryotic cells
 - Homeodomains often differ among species only in conservative substitutions
 - Example: the eyeless gene in fruit flies is very similar in DNA sequence (and function) to the animal gene PAX6

C

10.3 What Are Some Outcomes of Gene Control in Eukaryotes?

- X marks the spot
 - In humans and other mammals, a female's cells contain two X chromosomes
 - In each cell, one X chromosome is always tightly condensed, termed Barr bodies

ANIMATION: X-chromosome inactivation

Please wait, loading

To play movie you must be in Slide Show Mode

PC Users: Please wait for content to load, then click to play

Mac Users: **CLICK HERE**

X Marks the Spot

- Most of the genes on a Barr body are not expressed
 - X chromosome inactivation ensures that only one of the two X chromosomes in a female's cells is active

X Marks the Spot (cont'd.)

- Dosage compensation: mechanism in which X chromosome inactivation equalizes gene expression between males and females
- There is random inactivation of maternal and paternal X chromosomes in each cell
 - An adult female mammal is a "mosaic" for the expression of X chromosome genes

X Marks the Spot (cont'd.)

- How does just one of two X chromosomes get inactivated?
 - An X chromosome gene called XIST is transcribed on only one of the two X chromosomes
 - The gene's product, a long noncoding RNA, sticks to the chromosome that expresses the gene, causing it to condense into a Barr body

Male Sex Determination in Humans

- The human Y chromosome contains the master gene for male sex determination in mammals, SRY
 - SRY expression in XY embryos triggers the formation of testes
 - Mutations in the SRY gene cause XY individuals to develop external genitalia that appear female

Flower Formation

- In flowering plants, populations of cells in a shoot tip may give rise to a flower instead of leaves
 - Transcription factors produced by three sets of floral identity genes (called A, B, and C) guide the process

Flower Formation (cont'd.)

- When a flower forms at the tip of a shoot, differentiating cells form whorls of tissue
 - Each whorl produces one type of floral structure: sepals, petals, stamens, or carpels
- This pattern is dictated by sequential, overlapping expression of the ABC genes

ANIMATION: Flower formation

Please	wait,	loading
	0%	

To play movie you must be in Slide Show Mode

PC Users: Please wait for content to load, then click to play

Mac Users: **CLICK HERE**

10.4 What Are Some Outcomes of Gene Control in Prokaryotes?

- Prokaryotes do not undergo development, so these cells have no need for master genes
- Prokaryotes do respond to environmental fluctuations by adjusting gene expression
 - Example: bacteria transcribe certain genes only when a specific nutrient is available
 - The cell does not waste energy producing gene products that are not needed

What Are Some Outcomes of Gene Control in Prokaryotes? (cont'd.)

- Bacteria control gene expression mainly by adjusting the rate of transcription
- Genes that are used together often occur together on the chromosome, one after the other
- A single promoter precedes the genes, so all are transcribed together into a single RNA strand

What Are Some Outcomes of Gene Control in Prokaryotes? (cont'd.)

- Operon: group of genes together with a promoter—operator DNA sequence that controls their transcription
 - Although first discovered in bacteria, operons also occur in archaea and eukaryotes

The *lac* Operon

- An operon called *lac* allows E. coli cells to metabolize lactose
- The lac operon includes three genes and a promoter flanked by two operators

The lac Operon (cont'd.)

- Three genes of the lac operon:
 - One gene encodes a transport protein that brings lactose across the plasma membrane
 - Another gene encodes an enzyme that breaks the bond between lactose's two monosaccharide monomers, glucose, and galactose
 - A third gene encodes an enzyme whose function is still being investigated

The lac Operon (cont'd.)

- When lactose is not present, a repressor binds to the two operators and twists the region of DNA with the promoter into a loop
 - RNA polymerase cannot bind to the twistedup promoter, so the *lac* operon's genes cannot be transcribed

The lac Operon (cont'd.)

- When lactose is present, some of it is converted to another sugar that binds to the repressor and changes its shape
 - The altered repressor releases the operators and the looped DNA unwinds
 - The promoter is now accessible to RNA polymerase, and transcription of lactosemetabolizing genes begins

ANIMATION: Negative control of lactose operon

Please wait, loading

0%

To play movie you must be in Slide Show Mode

PC Users: Please wait for content to load, then click to play

Mac Users: **CLICK HERE**

Lactose Intolerance

- An individual's ability to digest lactose declines at a species-specific age
 - In the majority of human worldwide, the switch occurs at about age five, when expression of the gene for lactase shuts off
 - Results in the condition lactose intolerance

Lactose Intolerance (cont'd.)

- When lactase production slows, lactose passes undigested through the small intestine
 - The lactose ends up in the large intestine,
 which hosts huge numbers of *E. coli* etc.
 - The *E. coli* switch on their *lac* operons,
 resulting in the production of gaseous
 products causing distention and pain
 - Other metabolic products lead to diarrhea

Lactose Intolerance (cont'd.)

- Not everybody is lactose intolerant
 - About one-third of human adults carry a mutation that allows them to digest milk
 - This mutation is more common in some populations than in others

Lactose Intolerance (cont'd.)

South Tyrol Museum of Archaeology/A. Ochsenreiter, as altered by Lisa Starr.

10.5 Can Gene Expression Patterns Be Inherited?

- Direct methylation of DNA suppresses gene expression
- Once a DNA nucleotide becomes methylated, it will usually stay methylated in all of a cell's descendants
- Methylation is an epigenetic modification
 - Epigenetic: heritable changes in gene expression that are not the result of changes in DNA sequence

- In eukaryotes, methyl groups are usually added to a cytosine followed by a guanine
 - The particular cytosines that end up being methylated varies by the individual

- Methylation is influenced by environmental factors
 - Example: humans conceived during a famine have an unusually low number of methyl groups in certain genes
 - Leads to the expression of hormones that foster prenatal growth and development
 - May offer a survival advantage in a poor nutritional environment

- Inheritance of epigenetic modifications can adapt offspring to an environmental challenge much more quickly than evolution
 - Such modifications are not considered to be evolutionary because the underlying DNA sequence does not change
 - Even so, these changes may persist for generations

- Grandsons of boys who endured a winter of famine tend to outlive—by far grandsons of boys who overate at the same age
 - The effect is presumed to be due to epigenetic modification because these results were corrected for socioeconomic and genetic factors

10.6 Application: Between You and Eternity

- A mutated version of BRCA1 and/or BRCA2 genes is often found in breast and ovarian cancer cells
- The RNA product of the XIST gene does not properly coat one of the two X chromosomes in breast cancer cells

Application: Between You and Eternity (cont'd.)

- Why does the RNA product of an unmutated XIST gene not properly coat an X chromosome in cancer cells?
 - The BRAC1 protein physically associates with the RNA product of the XIST gene
 - Researchers restored proper XIST RNA coating—and proper X chromosome inactivation—by restoring the function of the BRCA1 protein in breast cancer cells

Application: Between You and Eternity (cont'd.)

Lynn Johnson/National Geographic Creative.