

Complex Numbers and Polar Coordinates

Copyright © Cengage Learning. All rights reserved.

SECTION 8.5

Polar Coordinates

Copyright © Cengage Learning. All rights reserved.

Learning Objectives

- 1 Graph an ordered pair in polar coordinates.
- 2 Convert an ordered pair from polar to rectangular coordinates or vice-versa.
- 3 Express a polar equation in rectangular coordinates.
- 4 Express a rectangular equation in polar coordinates.

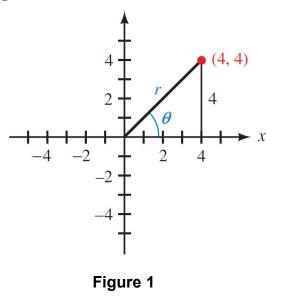
Example 1

A point lies at (4, 4) on a rectangular coordinate system. Give its address in polar coordinates (r, θ).

Solution:

We want to reach the same point by traveling *r* units on the terminal side of a standard position angle θ .

Figure 1 shows the point (4, 4), along with the distance *r* and angle θ .



cont'd

The triangle formed is a 45°–45°–90° right triangle. Therefore, *r* is $4\sqrt{2}$, and θ is 45°.

In rectangular coordinates, the address of our point is (4, 4).

In polar coordinates, the address is $(4\sqrt{2}, 45^{\circ})$ or $(4\sqrt{2}, \pi/4)$ using radians.

Polar Coordinates

Now let's formalize our ideas about polar coordinates. The foundation of the polar coordinate system is a ray called the *polar axis*, whose initial point is called the *pole* (Figure 2).

In the polar coordinate system, points are named by ordered pairs (r, θ) in which r is the directed distance from the pole on the terminal side of an angle θ , the initial side of which is the polar axis.

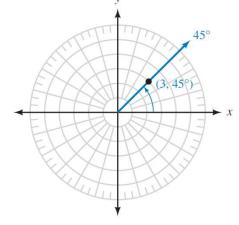
If the terminal side of θ has been rotated in a counterclockwise direction from the polar axis, then θ is a positive angle. Otherwise, θ is a negative angle.

Example 2

Graph the points (3, 45°), (2, $-4\pi/3$), (-4, $\pi/3$), and (-5, -210°) on a polar coordinate system.

Solution:

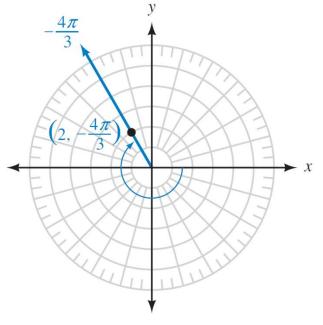
To graph $(3, 45^{\circ})$, we locate the point that is 3 units from the origin along the terminal side of 45°, as shown in Figure 4.



The point $(2, -4\pi/3)$ is 2 units along the terminal side of $-4\pi/3$, as Figure 5 indicates.

As you can see from Figures 4 and 5, if *r* is positive, we locate the point (*r*, θ) along the terminal side of θ .

The next two points we will graph have negative values of *r*.



cont'd

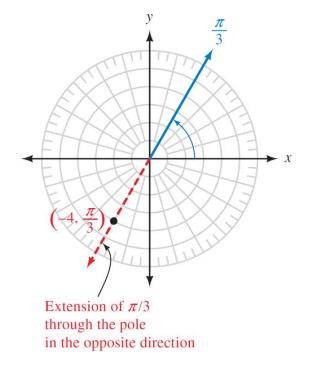
To graph a point (r, θ) in which *r* is negative, we look for the point that is *r* units in the *opposite* direction indicated by the terminal side of θ .

That is, we extend a ray from the pole that is directly opposite the terminal side of θ and locate the point *r* units along this ray.

To graph (-4, $\pi/3$), we first extend the terminal side of θ through the origin to create a ray in the opposite direction.

Then we locate the point that is 4 units from the origin along this ray, as shown in Figure 6.

The terminal side of θ has been drawn in blue, and the ray pointing in the opposite direction is shown in red.



cont'd

cont'd

To graph (-5, -210°), we look for the point that is 5 units from the origin along the ray in the opposite direction of -210° (Figure 7).

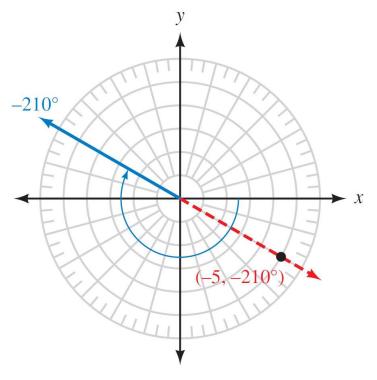


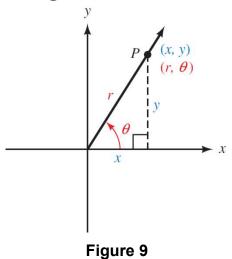
Figure 7

Polar Coordinates and Rectangular Coordinates

Polar Coordinates and Rectangular Coordinates

To derive the relationship between polar coordinates and rectangular coordinates, we consider a point *P* with rectangular coordinates (*x*, *y*) and polar coordinates (*r*, θ).

To convert back and forth between polar and rectangular coordinates, we simply use the relationships that exist among *x*, *y*, *r*, and θ in Figure 9.



Polar Coordinates and Rectangular Coordinates

TO CONVERT RECTANGULAR COORDINATES TO POLAR COORDINATES

Let

$$r = \pm \sqrt{x^2 + y^2}$$
 and $\tan \theta = \frac{y}{x}$

where the sign of *r* and the choice of θ place the point (r, θ) in the same quadrant as (x, y).

TO CONVERT POLAR COORDINATES TO RECTANGULAR COORDINATES

Let

$$x = r \cos \theta$$
 and $y = r \sin \theta$

Polar Coordinates and Rectangular Coordinates

The process of converting to rectangular coordinates is simply a matter of substituting *r* and θ into the preceding equations.

To convert to polar coordinates, we have to choose θ and the sign of *r* so the point (*r*, θ) is in the same quadrant as the point (*x*, *y*).

Example 4

Convert to rectangular coordinates.

a. (4, 30°) **b.**
$$\left(-\sqrt{2}, \frac{3\pi}{4}\right)$$
 c. (3, 270°)

Solution:

To convert from polar coordinates to rectangular coordinates, we substitute the given values of r and θ into the equations

$$x = r \cos \theta$$
 and $y = r \sin \theta$

Here are the conversions for each point along with the graphs in both rectangular and polar coordinates.

Example 4(a) – Solution

cont'd

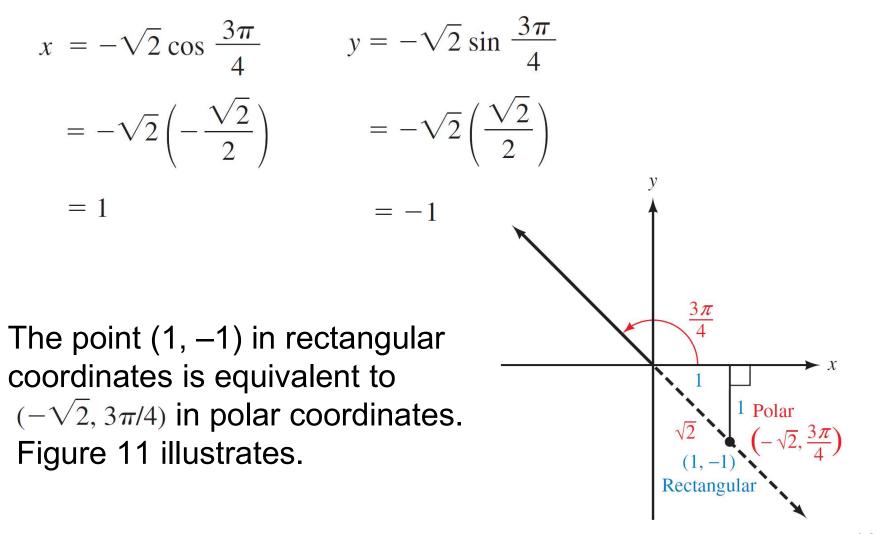
$$x = 4 \cos 30^{\circ} \qquad y = 4 \sin 30^{\circ}$$
$$= 4 \left(\frac{\sqrt{3}}{2}\right) \qquad = 4 \left(\frac{1}{2}\right)$$
$$= 2\sqrt{3} \qquad = 2 \qquad y$$
The point $(2\sqrt{3}, 2)$ in rectangular coordinates is equivalent to $(4, 30^{\circ})$ in polar coordinates.
Figure 10 illustrates.

Figure 10

17

Example 4(b) – Solution

cont'd



Example 4(c) – Solution

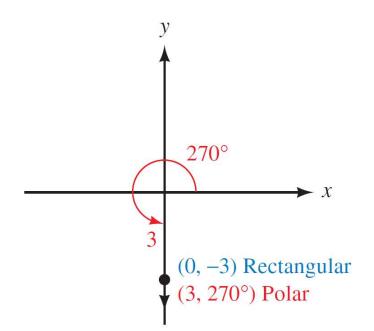
cont'd

 $x = 3 \cos 270^{\circ}$ $y = 3 \sin 270^{\circ}$

= 3(0) = 3(-1)

= 0 = -3

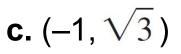
The point (0, -3) in rectangular coordinates is equivalent to (3, 270°) in polar coordinates. Figure 12 illustrates.



Example 5

Convert to polar coordinates.

a. (3, 3) **b.** (-2, 0)



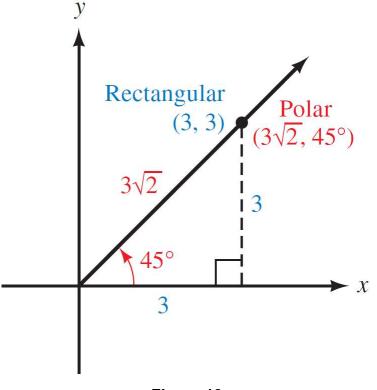
Solution:

a. Because *x* is 3 and *y* is 3, we have

$$r = \pm \sqrt{9 + 9}$$
$$= \pm 3\sqrt{2}$$
and $\tan \theta = \frac{3}{3}$
$$= 1$$

cont'd

Because (3, 3) is in QI, we can choose $r = 3\sqrt{2}$ and $\theta = 45^{\circ}$ (or $\pi/4$), as shown in Figure 13.



Remember, there are an infinite number of ordered pairs in polar coordinates that name the point (3, 3).

The point $(3\sqrt{2}, 45^{\circ})$ is just one of them.

Generally, we choose *r* and θ so that *r* is positive and θ is between 0° and 360°.

b. We have *x* = –2 and *y* = 0, so

$$r = \pm \sqrt{4+0}$$

$$=\pm 2$$

cont'd

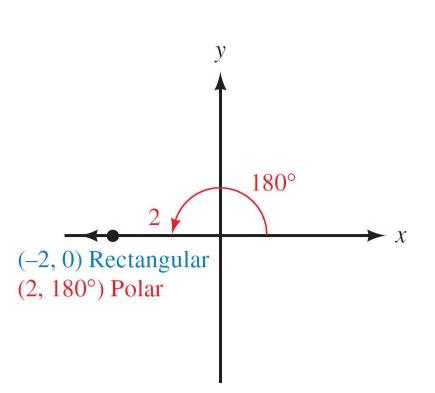
 $\tan \theta = \frac{0}{-2}$

= 0

And

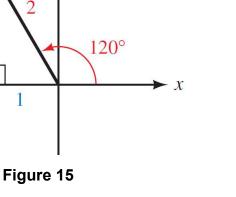
cont'd

Because (-2, 0) is on the negative *x*-axis, we can choose r = 2 and $\theta = 180^{\circ}$ (or π) to get the point (2, 180°). Figure 14 illustrates.



cont'd

c. Because x = -1 and $y = \sqrt{3}$, we have $r = \pm \sqrt{1+3}$ $= \pm 2$ and $\tan \theta = \frac{\sqrt{3}}{1}$ Rectangular $(-1, \sqrt{3})$ Polar $(2, 120^{\circ})$ Because $(-1,\sqrt{3})$ is in QII, we can let r = 2 and $\theta = 120^{\circ}$ (or $2\pi/3$). In polar coordinates, the point is $(2, 120^{\circ})$. Figure 15 illustrates.



Equations in Polar Coordinates

Equations in Polar Coordinates

Equations in polar coordinates have variables r and θ instead of x and y.

Example 6

Change $r^2 = 9 \sin 2\theta$ to rectangular coordinates.

Solution:

Before we substitute to clear the equation of *r* and θ , we must use a double-angle identity to write sin 2θ in terms of sin θ and cos θ .

$$r^{2} = 9 \sin 2\theta$$

$$r^{2} = 9 \cdot 2 \sin \theta \cos \theta$$
Double-angle identity
$$r^{2} = 18 \cdot \frac{y}{r} \cdot \frac{x}{r}$$
Substitute y/r for sin θ

 θ and x/r for $\cos \theta$

cont'd

$$r^2 = \frac{18xy}{r^2}$$

 $r^4 = 18xy$

$$(x^2 + y^2)^2 = 18xy$$

Multiply

Multiply both sides by r^2

Substitute $x^2 + y^2$ for r^2