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Graph a plane curve by plotting points.

Indicate the orientation of a plane curve.

Eliminate the parameter from a pair of 
parametric equations.

Use parametric equations as a model in a real-
life problem.
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Parametric Equations and Further Graphing

Let’s begin with a model of the giant wheel built by George 
Ferris. The diameter of this wheel is 250 feet, and the 
bottom of the wheel sits 14 feet above the ground. 

We can superimpose a coordinate 
system on our model, so that the 
origin of the coordinate system is 
at the center of the wheel. 
This is shown in Figure 1.

Figure 1
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Parametric Equations and Further Graphing

Choosing one of the carriages in the first quadrant as the 
point (x, y), we draw a line from the origin to the carriage. 
Then we draw the right triangle shown in Figure 2. 

Figure 2
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Parametric Equations and Further Graphing

From the triangle we have

The two equations on the right are called parametric 
equations. They show x and y as functions of a third 
variable, t, called the parameter. Each number we 
substitute for t gives us an ordered pair (x, y). 

If we graph each of these ordered pairs on a rectangular 
coordinate system, the resulting curve is called a plane 
curve. We demonstrate this in the next example.
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Example 1

Graph the plane curve defined by the parametric equations 
x = 125 cos t and y = 125 sin t.

Solution:

We can find points on the graph by choosing values of t
and using the two equations to find corresponding values of 
x and y.

Table 1 shows a number 
of ordered pairs, which we 
obtained by letting t be 
different multiples of /4.

Table 1
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Example 1 – Solution

The graph of the plane curve is shown in Figure 3.

cont’d

Figure 3
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Example 1 – Solution

We have labeled each point with its associated value of the 
parameter t. As expected, the curve is a circle. 

More importantly, notice in which direction the circle is 
traversed as t increases from 0 to 2. 

We say that the plane curve is oriented in a 
counterclockwise direction and indicate the orientation 
using small arrows.

cont’d
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Parametric Equations and Further Graphing

In general, the orientation of a plane curve is the direction 
the curve is traversed as the parameter increases. 

The ability of parametric equations to associate points on   
a curve with values of a parameter makes them especially 
suited for describing the path of an object in motion.
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Eliminating the Parameter
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Eliminating the Parameter

Let’s go back to our original set of parametric equations 
and solve for cos t and sin t:

Substituting the expressions above for cos t and sin t into 
the Pythagorean identity cos2 t + sin2 t = 1, we have
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Eliminating the Parameter

We recognize this last equation as the equation of a circle 
with a radius of 125 and center at the origin. 

What we have done is eliminate the parameter t to obtain 
an equation in just x and y whose graph we recognize. 

This process is called eliminating the parameter. Note that 
it gives us further justification that the graph of our set of 
parametric equations is a circle.
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Example 2

Eliminate the parameter t from the parametric equations 
x = 3 cos t and y = 2 sin t.

Solution:

Again, we will use the identity cos2 t + sin2 t = 1. Before we 
do so, however, we must solve the first equation for cos t
and the second equation for sin t.
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Example 2 – Solution

Substituting x/3 and y/2 for cos t and sin t into the first 
Pythagorean identity gives us

which is the equation of an ellipse. 

The center is at the origin, the x-intercepts are 3 and –3, 
and the y-intercepts are 2 and –2.

cont’d
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Example 2 – Solution

Figure 8 shows the graph.

cont’d

Figure 8
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Making Our Models More Realistic
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Making Our Models More Realistic

Let’s go back to our Ferris wheel model from the beginning 
of this section. Our wheel has a radius of 125 feet and sits 
14 feet above the ground. One trip around the wheel takes 
20 minutes.

Figure 11 shows this model 
with a coordinate system 
superimposed with its origin 
at the center of the wheel.

Figure 11
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Making Our Models More Realistic

Also shown are the parametric equations that describe the 
path of someone riding the wheel.

Our model would be more realistic if the x-axis was along 
the ground, below the wheel. 

We can accomplish this very easily by moving everything 
up 139 feet (125 feet for the radius and another 14 feet for 
the wheel’s height above the ground).
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Making Our Models More Realistic

Figure 12 shows our new graph next to a new set of 
parametric equations.

Figure 12
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Making Our Models More Realistic

Next, let’s assume there is a ticket booth 200 feet to the left 
of the wheel. If we want to use the ticket booth as our 
starting point, we can move our graph to the right 200 feet. 

Figure 13 shows this 
model, along with the 
corresponding set of 
parametric equations.

Figure 13
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Making Our Models More Realistic

Note:
We can solve this last set of equations for cos t and sin t to 
get

Using these results in our Pythagorean identity, 
cos2 t + sin2 t = 1, we have (x – 200)2 + (y – 139)2 = 1252

which we recognize as the equation of a circle with center 
at (200, 139) and radius 125.
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Making Our Models More Realistic

Continuing to improve our model, we would like the rider on 
the wheel to start their ride at the bottom of the wheel. 

Assuming t is in radians, we accomplish this by subtracting 
/2 from t giving us

Finally, one trip around the wheel takes 20 minutes, so we 
can write our equations in terms of time T by using the 
proportion
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Making Our Models More Realistic

Solving for t we have

Substituting this expression for t into our parametric 
equations we have

These last equations give us a very accurate model of the 
path taken by someone riding on this Ferris wheel.
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Making Our Models More Realistic

To graph these equations on our graphing calculator, we 
can use the following window:

Using the zoom-square command, 
we have the graph shown in 
Figure 14.

Figure 14
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Making Our Models More Realistic

Figure 15 shows a trace of the graph. Tracing around this 
graph gives us the position of the rider at each minute of 
the 20-minute ride.

Figure 15
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Parametric Equations and the 
Human Cannonball
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Parametric Equations and the Human Cannonball

The human cannonball when shot from a cannon with an 
initial velocity of 50 miles per hour at an angle of 60° from 
the horizontal, will have a horizontal velocity of 25 miles per 
hour and an initial vertical velocity of 43 miles per hour 
(Figure 16).

Figure 16
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Parametric Equations and the Human Cannonball

We can generalize this so that a human cannonball, if shot 
from a cannon at |V0| miles per hour at an angle of 
elevation , will have a horizontal speed of |V0| cos  miles 
per hour and an initial vertical speed of |V0| sin  miles per 
hour (Figure 17).

Figure 17
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Parametric Equations and the Human Cannonball

Neglecting the resistance of air, the only force acting on  
the human cannonball is the force of gravity, which is an 
acceleration of 32 feet per second squared toward the 
earth. 

Because the cannonball’s horizontal speed is constant, we 
can find the distance traveled after t seconds by simply 
multiplying speed and time. 

Therefore, the distance traveled horizontally after t seconds 
is
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Parametric Equations and the Human Cannonball

To find the cannonball’s vertical distance from the cannon 
after t seconds, we use a formula from physics:

This gives us the following set of parametric equations:

The equations describe the path of a human cannonball 
shot from a cannon at a speed of |V0|, at an angle of 
degrees from horizontal. So that the units will agree, |V0| 
must be in feet per second because t is in seconds.


