

The Six Trigonometric Functions

Copyright © Cengage Learning. All rights reserved.

SECTION 1.5

More on Identities

Copyright © Cengage Learning. All rights reserved.

Learning Objectives

- 1 Write an expression in terms of sines and cosines.
- 2 Simplify an expression containing trigonometric functions.
- 3 Use a trigonometric substitution to simplify a radical expression.
- 4 Verify an equation is an identity.

Write tan θ in terms of sin θ .

Solution:

When we say we want tan θ written in terms of sin θ , we mean that we want to write an expression that is equivalent to tan θ but involves no trigonometric function other than sin θ .

Let's begin by using a ratio identity to write tan θ in terms of sin θ and cos θ .

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Example 1 – Solution

cont'd

Now we need to replace $\cos \theta$ with an expression involving only $\sin \theta$. Since $\cos \theta = \pm \sqrt{1 - \sin^2 \theta}$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
$$= \frac{\sin \theta}{\pm \sqrt{1 - \sin^2 \theta}}$$
$$= \pm \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}$$

This last expression is equivalent to tan θ and is written in terms of sin θ only. (In a problem like this, it is okay to include numbers and algebraic symbols with sin θ .)

Multiply $(\sin \theta + 2)(\sin \theta - 5)$.

Solution:

We multiply these two expressions in the same way we would multiply (x + 2)(x - 5). (In some algebra books, this kind of multiplication is accomplished using the FOIL method.)

 $(\sin \theta + 2)(\sin \theta - 5) = \sin \theta \sin \theta - 5 \sin \theta + 2 \sin \theta - 10$

$$=\sin^2\theta - 3\sin\theta - 10$$

Simplify the expression $\sqrt{x^2 + 9}$ as much as possible after substituting 3 tan θ for *x*.

Solution:

- -

Our goal is to write the expression $\sqrt{x^2 + 9}$ without a square root by first making the substitution $x = 3 \tan \theta$.

If
then the expression
$$\sqrt{x^2 + 9}$$

becomes $\sqrt{(3 \tan \theta)^2 + 9} = \sqrt{9 \tan^2 \theta + 9}$
 $= \sqrt{9(\tan^2 \theta + 1)}$
 $= \sqrt{9 \sec^2 \theta}$
 $= 3 |\sec \theta|$

7

More on Identities

Note 1: We must use the absolute value symbol unless we know that sec θ is positive. Remember, in algebra, $\sqrt{a^2} = a$ only when *a* is positive or zero. If it is possible that *a* is negative, then $\sqrt{a^2} = |a|$.

Note 2: After reading through Example 5, you may be wondering if it is mathematically correct to make the substitution $x = 3 \tan \theta$. After all, $x \tan \theta$ any real number because $x^2 + 9$ will always be positive.

Prove the identity $(\sin \theta + \cos \theta)^2 = 1 + 2 \sin \theta \cos \theta$.

Solution:

Let's agree to prove the identities in this section, and the problem set that follows, by transforming the left side into the right side. In this case, we begin by expanding $(\sin \theta + \cos \theta)^2$. (Remember from algebra, $(a + b)^2 = a^2 + 2ab + b^2$.)

 $(\sin \theta + \cos \theta)^2 = \sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta$ $= (\sin^2 \theta + \cos^2 \theta) + 2 \sin \theta \cos \theta \quad \text{Rearrange terms}$ $= 1 + 2 \sin \theta \cos \theta \qquad \text{Pythagorean identity}$

More on Identities

We should mention that the ability to prove identities in trigonometry is not always obtained immediately.

It usually requires a lot of practice. The more you work at it, the better you will become at it.