

The Six Trigonometric Functions

Copyright © Cengage Learning. All rights reserved.

SECTION 1.4

Introduction to Identities

Copyright © Cengage Learning. All rights reserved.

Objectives

- 1 Find the value of a trigonometric function using a reciprocal identity.
- 2 Find the value of a trigonometric function using a ratio identity.
- 3 Evaluate a trigonometric function raised to an exponent.
- 4 Use a Pythagorean identity to find the value of a trigonometric function.

Our definition for the sine and cosecant functions indicate that they are reciprocals; that is,

$$\csc \theta = \frac{1}{\sin \theta}$$
 because $\frac{1}{\sin \theta} = \frac{1}{y/r} = \frac{r}{y} = \csc \theta$

Note: We can also write this same relationship between sin θ and csc θ in another form as

$$\sin \theta = \frac{1}{\csc \theta}$$
 because $\frac{1}{\csc \theta} = \frac{1}{r/y} = \frac{y}{r} = \sin \theta$

The first identity we wrote, $\csc \theta = 1/\sin \theta$, is the basic identity. The second one, $\sin \theta = 1/\csc \theta$, is an equivalent form of the first.

Table 1 lists three basic reciprocal identities and their common equivalent forms.

Reciprocal Identities	Equivalent Forms
$\csc \theta = \frac{1}{\sin \theta}$	$\sin \theta = \frac{1}{\csc \theta}$
$\sec \theta = \frac{1}{\cos \theta}$	$\cos \theta = \frac{1}{\sec \theta}$
$\cot \theta = \frac{1}{\tan \theta}$	$\tan \theta = \frac{1}{\cot \theta}$

Table 1

Example

If
$$\sin \theta = \frac{3}{5}$$
, then $\csc \theta = \frac{5}{3}$, because
 $\csc \theta = \frac{1}{\sin \theta} = \frac{1}{3/5} = \frac{5}{3}$

Ratio Identities

Ratio Identities

There are two ratio identities, one for tan θ and one for cot θ (see Table 2).

Ratio Identities		
$\tan \theta = \frac{\sin \theta}{\cos \theta}$	because	$\frac{\sin \theta}{\cos \theta} = \frac{y/r}{x/r} = \frac{y}{x} = \tan \theta$
$\cot \theta = \frac{\cos \theta}{\sin \theta}$	because	$\frac{\cos\theta}{\sin\theta} = \frac{x/r}{y/r} = \frac{x}{y} = \cot\theta$

Table 2

Example 7

If sin $\theta = -3/5$ and cos $\theta = 4/5$, find tan θ and cot θ .

Solution:

Using the ratio identities, we have

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-3/5}{4/5} = -\frac{3}{5} \cdot \frac{5}{4} = -\frac{3}{4}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{4/5}{-3/5} = \frac{4}{5} \cdot \left(-\frac{5}{3}\right) = -\frac{4}{3}$$

cont'd

Note: Once we found tan θ , we could have used a reciprocal identity to find cot θ .

$$\cot \theta = \frac{1}{\tan \theta} = \frac{1}{-3/4} = -\frac{4}{3}$$

Ratio Identities

NOTATION

The notation $\sin^2 \theta$ is a shorthand notation for $(\sin \theta)^2$. It indicates we are to square the number that is the sine of θ .

Example

If
$$\sin \theta = \frac{3}{5}$$
, then $\sin^2 \theta = \left(\frac{3}{5}\right)^2 = \frac{9}{25}$.

Pythagorean Identities

Pythagorean Identities

We start with the relationship among *x*, *y*, and *r* as given in the definition of sin θ and cos θ .

We summarize the identities in Table 3.

Pythagorean Identities	Equivalent Forms
$\cos^2\theta + \sin^2\theta = 1$	$\cos\theta = \pm \sqrt{1 - \sin^2\theta}$
$1 + \tan^2 \theta = \sec^2 \theta$ 1 + \cot^2 \theta = \cot^2 \theta	$\sin\theta = \pm\sqrt{1-\cos^2\theta}$

Table 3

Example 11

If $\cos \theta = 1/2$ and θ terminates in QIV, find the remaining trigonometric ratios for θ .

Solution:

The first, and easiest, ratio to find is sec θ because it is the reciprocal of cos θ .

$$\sec \theta = \frac{1}{\cos \theta} = \frac{1}{1/2} = 2$$

Next we find sin θ . Using one of the equivalent forms of our Pythagorean identity, we have

$$\sin\theta = \pm\sqrt{1-\cos^2\theta}$$

cont'd

Because θ terminates in QIV, sin θ will be negative. This gives us

$$\sin \theta = -\sqrt{1 - \cos^2 \theta} \qquad \text{Negative sign because } \theta \in \text{QIV}$$

$$= -\sqrt{1 - \left(\frac{1}{2}\right)^2}$$
 Substitute $\frac{1}{2}$ for $\cos \theta$

$$= -\sqrt{1 - \frac{1}{4}}$$
 Square $\frac{1}{2}$ to get $\frac{1}{4}$

cont'd

Now that we have sin θ and cos θ , we can find tan θ by using a ratio identity.

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-\sqrt{3}/2}{1/2} = -\frac{\sqrt{3}}{2} \cdot \frac{2}{1} = -\sqrt{3}$$

17

cont'd

Cot θ and csc θ are the reciprocals of tan θ and sin θ , respectively. Therefore,

$$\cot \theta = \frac{1}{\tan \theta} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$$
$$\csc \theta = \frac{1}{\sin \theta} = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$$

Here are all six ratios together:

$$\sin \theta = -\frac{\sqrt{3}}{2} \qquad \csc \theta = -\frac{2\sqrt{3}}{3}$$

cont'd

$$\cos \theta = \frac{1}{2}$$
 $\sec \theta = 2$
 $\tan \theta = -\sqrt{3}$ $\cot \theta = -\frac{\sqrt{3}}{3}$