

The Six Trigonometric Functions

Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved.

Objectives

- 1 Find the value of a trigonometric function of an angle given a point on the terminal side.
- 2 Use Definition I to answer a conceptual question about a trigonometric function.
- 3 Determine the quadrants an angle could terminate in.
- 4 Find the value of a trigonometric function given one of the other values.

DEFINITION I

If θ is an angle in standard position, and the point (x, y) is any point on the terminal side of θ other than the origin, then the six trigonometric functions of angle θ are defined as follows:

Function		Definition					
The sine of θ	=	$\sin heta$	=	$\frac{y}{r}$			
The cosine of θ	=	$\cos \theta$	=	$\frac{x}{r}$			
The tangent of θ	=	$\tan \theta$	=	$\frac{y}{x} \ (x \neq 0)$			
The cotangent of θ	=	$\cot \theta$	=	$\frac{x}{y} (y \neq 0)$			
The secant of θ	=	$\sec \theta$	=	$\frac{r}{x} (x \neq 0)$			
The cosecant of θ	=	$\csc \theta$	=	$\frac{r}{y} (y \neq 0)$			
where $x^2 + y^2 = r^2$, or $r = \sqrt{x^2 + y^2}$. That is, <i>r</i> is the distance from the origin to (x, y) .							

As you can see, the six trigonometric functions are simply names given to the six possible ratios that can be made from the numbers x, y, and r as shown in Figure 1.

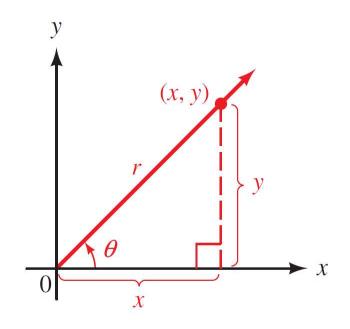


Figure 1

In particular, notice that tan θ can be interpreted as the slope of the line corresponding to the terminal side of θ .

Both tan θ and sec θ will be undefined when x = 0, which will occur any time the terminal side of θ coincides with the *y*-axis.

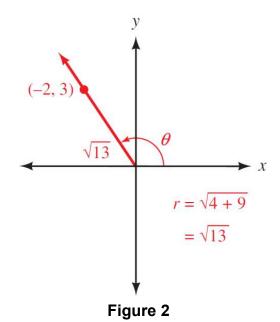
Likewise, both $\cot \theta$ and $\csc \theta$ will be undefined when y = 0, which will occur any time the terminal side of θ coincides with the *x*-axis.

Example 1

Find the six trigonometric functions of θ if θ is in standard position and the point (-2, 3) is on the terminal side of θ .

Solution:

We begin by making a diagram showing θ , (-2, 3), and the distance *r* from the origin to (-2, 3), as shown in Figure 2.



Example 1 – Solution

cont'd

Applying the definition for the six trigonometric functions using the values x = -2, y = 3, and $r = \sqrt{13}$, we have

$$\sin \theta = \frac{y}{r} = \frac{3}{\sqrt{13}} = \frac{3\sqrt{13}}{13} \qquad \csc \theta = \frac{r}{y} = \frac{\sqrt{13}}{3}$$
$$\cos \theta = \frac{x}{r} = -\frac{2}{\sqrt{13}} = -\frac{2\sqrt{13}}{13} \qquad \sec \theta = \frac{r}{x} = -\frac{\sqrt{13}}{2}$$
$$\tan \theta = \frac{y}{x} = -\frac{3}{2} \qquad \cot \theta = \frac{x}{y} = -\frac{2}{3}$$

8

Note: In algebra, when we encounter expressions like $3/\sqrt{13}$ that contain a radical in the denominator, we usually rationalize the denominator; in this case, by multiplying the numerator and the denominator by $\sqrt{13}$

$$\frac{3}{\sqrt{13}} = \frac{3}{\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}} = \frac{3\sqrt{13}}{13}$$

In trigonometry, it is sometimes convenient to use $3\sqrt{13}/13$, and at other times it is easier to use $3/\sqrt{13}$.

In most cases we will go ahead and rationalize denominators, but you should check and see if your instructor has a preference either way.

The algebraic sign, + or –, of each of the six trigonometric functions will depend on the quadrant in which θ terminates.

For example, in quadrant I all six trigonometric functions are positive because *x*, *y*, and *r* are all positive.

In quadrant II, only sin θ and csc θ are positive because y and r are positive and x is negative.

Table 1 shows the signs of all the ratios in each of the four quadrants.

TABLE 1 For θ in	QI	QII	QIII	QIV
$\sin \theta = \frac{y}{r} \text{ and } \csc \theta = \frac{r}{y}$	+	+	_	_
$\cos \theta = \frac{x}{r}$ and $\sec \theta = \frac{r}{x}$	+	—	—	+
$\tan \theta = \frac{y}{x} \text{ and } \cot \theta = \frac{x}{y}$	+	_	+	_

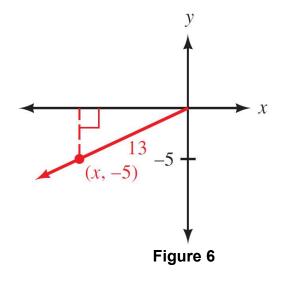
Example 5

If sin $\theta = -5/13$, and θ terminates in quadrant III, find cos θ and tan θ .

Solution:

Because sin $\theta = -5/13$, we know the ratio of *y* to *r*, or *y*/*r*, is -5/13. We can let *y* be -5 and *r* be 13 and use these values of *y* and *r* to find *x*.

Figure 6 shows θ in standard position with the point on the terminal side of θ having a *y*-coordinate of -5.



Example 5 – Solution

cont'd

To find *x*, we use the fact that $x^2 + y^2 = r^2$.

$$x^2 + y^2 = r^2$$

$$x^2 + (-5)^2 = 13^2$$

$$x^2 + 25 = 169$$

$$x^2 = 144$$

$$x = \pm 12$$

Example 5 – Solution

Is x the number 12 or -12?

Because θ terminates in quadrant III, we know any point on its terminal side will have a negative *x*-coordinate; therefore,

$$x = -12$$

Using x = -12, y = -5, and r = 13 in our original definition, we have

$$\cos \theta = \frac{x}{r} = \frac{-12}{13} = -\frac{12}{13}$$
 and $\tan \theta = \frac{y}{x} = \frac{-5}{-12} = \frac{5}{12}$

cont'd

As a final note, we should emphasize that the trigonometric functions of an angle are independent of the choice of the point (x, y) on the terminal side of the angle.

Figure 7 shows an angle θ in standard position.

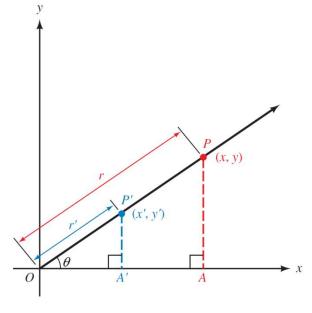


Figure 7

Points P(x, y) and P'(x', y') are both points on the terminal side of θ .

Because triangles *P'OA'* and *POA* are similar triangles, their corresponding sides are proportional.

That is,

$$\sin \theta = \frac{y'}{r'} = \frac{y}{r} \qquad \cos \theta = \frac{x'}{r'} = \frac{x}{r} \qquad \tan \theta = \frac{y'}{x'} = \frac{y}{x}$$