

Copyright © Cengage Learning. All rights reserved.

Multiplication with Whole Numbers

Copyright © Cengage Learning. All rights reserved.

Objectives

- A Multiply whole numbers using repeated addition.
- Understand the notation and vocabulary of multiplication.
- **c** Identify properties of multiplication.
- D Solve equations with multiplication.
- **E** Solve applications with multiplication.

A Multiplying Whole Numbers

Multiplying Whole Numbers

To begin, we can think of multiplication as shorthand for repeated addition.

That is, multiplying 3 times 4 can be thought of this way:

3 times 4 = 4 + 4 + 4 = 12

Multiplying 3 times 4 means to add three 4's. We can write 3 times 4 as 3×4 , or $3 \cdot 4$.

Example 1

Multiply: 3 • 4,000

Solution:

Using the definition of multiplication as repeated addition, we have

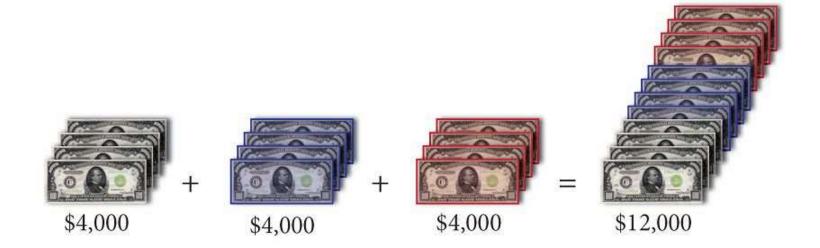
$$3 \cdot 4,000 = 4,000 + 4,000 + 4,000$$

= 12,000

Example 1 – Solution

cont'd

Here is one way to visualize this process.



Notice that if we had multiplied 3 and 4 to get 12 and then attached three zeros on the right, the result would have been the same.

Facts of Multiplication

Facts of Multiplication

Here are the basic multiplication facts that will help you in this section.

×	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	4	6	8	10	12	14	16	18
3	3	6	9	12	15	18	21	24	27
4	4	8	12	16	20	24	28	32	36
5	5	10	15	20	25	30	35	40	45
6	6	12	18	24	30	36	42	48	54
7	7	14	21	28	35	42	49	56	63
8	8	16	24	32	40	48	56	64	72
9	9	18	27	36	45	54	63	72	81

B Notation and Vocabulary

Notation and Vocabulary

There are many ways to indicate multiplication. All the following statements are equivalent.

They all indicate multiplication with the numbers 3 and 4.

$$3 \cdot 4, 3 \times 4, 3(4), (3)4, (3)(4), 4 \times 3$$

If one or both of the numbers we are multiplying are represented by letters, we may also use the following notation:

5n	means	5 times <i>n</i>
ab	means	a times b

Notation and Vocabulary

We use the word *product* to indicate multiplication. If we say, "The product of 3 and 4 is 12," then we mean

$$3 \cdot 4 = 12$$

Both $3 \cdot 4$ and 12 are called the product of 3 and 4. The 3 and 4 are called *factors*.

Definition

Factors are numbers that, when multiplied together, give a product.

Notation and Vocabulary

Table 1 gives some word statements involving multiplication and their mathematical equivalents written in symbols.

TABLE 1 In English	In Symbols
The product of 2 and 5	2 · 5
The product of 5 and 2	5 · 2
The product of 4 and <i>n</i>	4 <i>n</i>
The product of <i>x</i> and <i>y</i>	ху
The product of 9 and 6 is 54.	9 · 6 = 54
The product of 2 and 8 is 16.	$2 \cdot 8 = 16$

Example 2

Identify the products and factors in the statement

$$9 \cdot 8 = 72$$

Solution:

The factors are 9 and 8, and the products are 9 • 8 and 72.

To develop an efficient method of multiplication, we need to use what is called the *distributive property*.

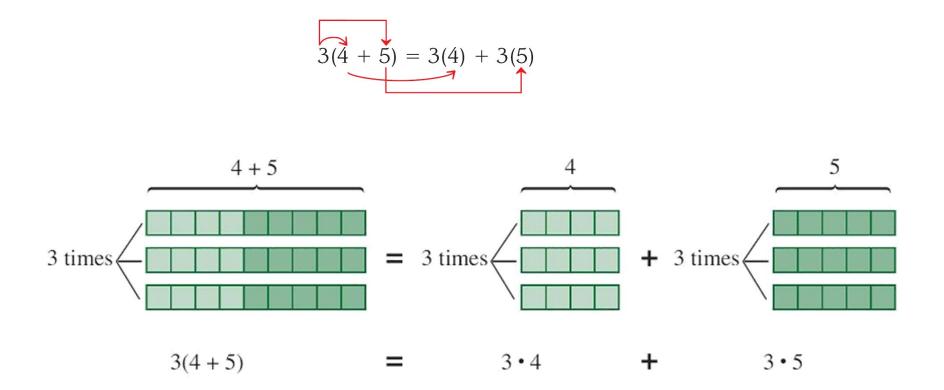
To begin, consider the following two problems:

Problem 1	Problem 2
3(4 + 5)	3(4) + 3(5)
= 3(9)	= 12 + 15
= 27	= 27

The result in both cases is the same number, 27. This indicates that the original two expressions must have been equal also. That is,

$$3(4 + 5) = 3(4) + 3(5)$$

This is an example of the distributive property. We say that multiplication *distributes* over addition.



We can write this property in symbols using the letters *a*, *b*, and *c* to represent any three whole numbers.

Distributive Property

If *a*, *b*, and *c* represent any three whole numbers, then

a(b + c) = a(b) + a(c)

Suppose we want to find the product 7(65).

By writing 65 as 60 + 5 and applying the distributive property, we have:

7(65) = 7(60 + 5)= 7(60) + 7(5) = 420 + 35 = 455 65 = 60 + 5Distributive property Multiply.

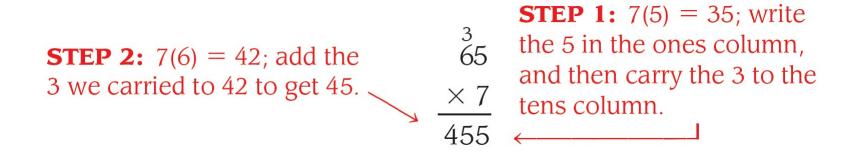
We can write the same problem vertically like this:

$$60 + 5$$

 $\times 7$
 $35 \leftarrow 7(5) = 35$
 $+ 420 \leftarrow 7(60) = 420$
 455

This saves some space in writing.

Notice that we can cut down on the amount of writing even more if we write the problem this way:



This shortcut notation takes some practice.

Example 4

Multiply: 9(43).

STEP 2:
$$9(4) = 36$$
; add the
2 we carried to 36 to get 38. $\times 9$
387

STEP 1: 9(3) = 27; write the 7 in the ones column, and then carry the 2 to the tens column.

Here are some other important properties of multiplication:

Multiplication Property of 0

If *a* represents any number, then

 $a \cdot 0 = 0$ and $0 \cdot a = 0$

In words: Multiplication by 0 always results in 0.

Multiplication Property of 1

If *a* represents any number, then

$$a \cdot 1 = a$$
 and $1 \cdot a = a$

In words: Multiplying any number by 1 leaves that number unchanged.

Commutative Property of Multiplication

If *a* and *b* are any two numbers, then

ab = ba

In words: The order of the numbers in a product doesn't affect the result.

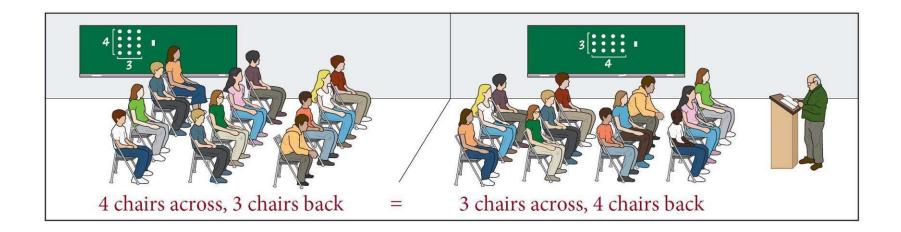
Associative Property of Multiplication

If *a*, *b*, and *c* represent any three numbers, then

(ab)C = a(bC)

In words: We can change the grouping of the numbers in a product without changing the result.

To visualize the commutative property, we can think of an instructor with 12 students.



Example 7

Use the commutative property of multiplication to rewrite each of the following products:

a. 7 • 9 **b.** 4(6)

Solution:

Applying the commutative property to each expression, we have:

a. 7 • 9 = 9 • 7

b. 4(6) = 6(4)

Solving Equations

Solving Equations

If *n* is used to represent a number, then the equation

4 · *n* = 12

is read "4 times *n* is 12," or "The product of 4 and *n* is 12."

This means that we are looking for the number we multiply by 4 to get 12.

The number is 3. Because the equation becomes a true statement if n is 3, we say that 3 is the solution to the equation.

Example 9

Find the solution to each of the following equations:

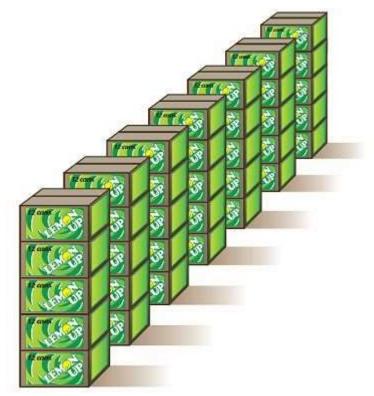
a. $6 \cdot n = 24$ **b.** $4 \cdot n = 36$ **c.** $15 = 3 \cdot n$ **d.** $21 = 3 \cdot n$

Solution:

- **a.** The solution to $6 \cdot n = 24$ is 4, because $6 \cdot 4 = 24$.
- **b.** The solution to $4 \cdot n = 36$ is 9, because $4 \cdot 9 = 36$.
- **c.** The solution to $15 = 3 \cdot n$ is 5, because $15 = 3 \cdot 5$.
- **d.** The solution to $21 = 3 \cdot n$ is 7, because $21 = 3 \cdot 7$.

Example 10

A supermarket orders 35 cases of a certain soft drink. If each case contains 12 cans of the drink, how many cans were ordered?



Example 10 – Solution

We have 35 cases, and each case has 12 cans.

The total number of cans is the product of 35 and 12, which is 35(12):

$$12$$

$$\times 35$$

$$60 \leftarrow 5(12) = 60$$

$$+ 360 \leftarrow 30(12) = 360$$

$$420$$

There is a total of 420 cans of the soft drink.