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What do you think?
• How would you define fraction?

• What pictures, models, and/or words explain why
is less than ?

• What is the difference between the whole and the unit?
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Fractions
The origin of the word fraction is interesting; it is derived 
from the Latin word fractio, which comes from the Latin 
word frangere, meaning “to break.”

In early American arithmetic books, the term broken 
numbers was often used instead of the word fraction. The 
first known mention of the actual word fraction was by 
Chaucer in 1321.



5

Fractions
Fractions are different from counting numbers and integers 
in a significant way: two numbers are needed to represent 
one amount! From another perspective, when we move 
from working with counting numbers to fractions, we are 
changing the question from how many to how much.

For example, we use counting numbers to count how many 
(such as 200) students go to college. We use fractions to 
quantify how much (such as ) of a particular graduating 
class goes to college. 
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Fractions
A counting number counts the number of units; a fraction 
tells us how much of a whole there is. This is a very 
important concept that we will explore more.
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Clarifying Two Terms: Fractions 
and Rational Numbers
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Clarifying Two Terms: Fractions and Rational Numbers

A rational number is a number whose value can be 
expressed as the quotient or ratio of two integers a and b, 
represented as where b ≠ 0.

A fraction is a number whose value can be expressed as 
the quotient or ratio of any two numbers a and b, 
represented as where b ≠ 0. For example, is a fraction 
but not a rational number.

In either case, a is called the numerator and b is called the 
denominator.
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Clarifying Two Terms: Fractions and Rational Numbers

Technically, the set of rational numbers is a subset of the 
set of fractions, because fractions include amounts like
and which are not rational numbers because the 
numerators are not integers.

In elementary school, children work with fractions that are 
rational numbers, and these will be our primary focus in this 
chapter. Therefore, we will generally use the term fraction.
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Fractions in History
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Fractions in History
The notion of may make sense to you, but it is not easy 
for many children, and it is such an abstraction that it is 
relatively recent in human history.

The Egyptians expressed all fractions (with the exception of
) as unit fractions—that is, fractions whose numerator is 

1. They used the symbol which they placed above a 
numeral to indicate a fraction. Thus, was written as

The Egyptians’ decision to represent fractional amounts 
using only unit fractions was a consequence of their 
difficulty with using two numbers to represent a single 
amount.
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Fractions in History
As we saw earlier, the idea of representing all amounts with 
whole numbers was very appealing to the ancient Greeks, 
and so they did not even consider the idea of creating 
numbers that were not whole numbers.

Rather, they worked with ratios. For example, instead of 
saying that of the students at a college are male, they 
said that the ratio of males to females is 2 to 3.
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Fractions in History
The Romans also avoided fractions. Rather than dealing 
with parts of a unit, they created smaller units. Their word for 
twelfth was unica, which is where our words ounce and inch 
come from.

Our present method of writing fractions (for example, ) 
was probably invented by the Hindus. Brahmagupta (A.D.
628) wrote The bar seems to have been introduced by the 
Arabs.
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Investigation 2.2a – Tools for Defining a Unit Whole

You are teaching a third-grade classroom and are going to draw a 
picture of on the board. When you ask your 
students how many circles to draw to illustrateyou get two 
proposals. One student suggests that you start with one circle, 
another student suggests you start with three circles. Which 
student is correct?
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Investigation 2.2a – Discussion
Each student is using a model that could be used to 
illustrate If one circle represents the unit whole, then
would look like:

If three circles represent the unit whole, then would look 
like:
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Investigation 2.2a – Discussion continued

Depending on the context of the problem, which model 
makes sense to the learner, and the teacher’s goals for the 
discussion in this situation, a strategic decision would be 
made as to which model to use or to use both models to 
gain a deeper understanding.

Using these pictures strategically illustrates using 
appropriate tools to solve a problem, as MP 5 suggests.
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Investigation 2.2b – Fraction Contexts with Visual Models: What Does
Mean and Look Like?

One of the interesting things about fractions is that we can 
represent them with different visual models, depending on 
the context. First draw as many different visual models of
as you can. Then read on….

A. Explain how each of the visual models in Figure 2.6 
represents

Figure 2.6
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Investigation 2.2b – Fraction Contexts with Visual Models: What Does
Mean and Look Like? continued

B. How are the following contexts for similar and 
different?
1. Four children want to share pies equally. How much 

pie does each child get?

2. Joey grew of an inch last month.

3. of a dozen donuts have been eaten.

4. At a college, of the students are women.

C. Which picture from A most closely matches each of the 
contexts from B?
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Investigation 2.2b – Discussion
A key idea with fractions is the whole and the unit. We will 
discuss this idea throughout the next two sections, but 
introducing them now will help us to build our 
understanding. The unit refers to what equals 1. The whole 
is the given object or total amount.

1. Four children want to share 3 pies equally. How much 
pie does each child get?

This situation illustrates fractions as a quotient. We are 
dividing 3 pies (the whole) by 4 children.
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Investigation 2.2b – Discussion continued

The answer of pie per child is each child’s share. In other 
words, each child gets pie per child is each child’s share. 
In other words, each child gets of a pie (the unit).

Here, 1 pie is the context for “1,” but the whole, or total 
amount we are working with, is 3 pies. When we are dealing 
with a fraction in the context of a quotient, an amount a 
needs to be shared or divided equally into b groups.

The first visual model in part A relates to this context.
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Investigation 2.2b – Discussion continued

Another way to look at this is in Figure 2.7.

Figure 2.7

This type of visual model is called an area model since the 
size (or area) of the pies is the whole. The pieces also have 
to be the same size (or area).
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Investigation 2.2b – Discussion continued

This is the earliest model of fractions that children 
encounter, even before school with real-life examples like
of a sandwich (where the whole is the size of the sandwich). 
Along with circles, other area models include fraction 
rectangles, grid paper, and pattern blocks.

2. Joey grew of an inch last month.

This situation illustrates fractions as a measure. To 
measure the appropriate location of we must divide 
(partition) the unit length (1 inch) into 4 equal lengths.
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Investigation 2.2b – Discussion continued

The length of 3 of those equal lengths shows how much 
Joey grew (Figure 2.8). Here, both the whole and the unit 
are 1 inch.

Figure 2.8

This type of visual model is called a linear model since the 
length of the line segment is the whole. The pieces of the 
line also have to be the same size (or length). Along with 
number lines, other linear models include Cuisenaire rods 
and Singapore bar models.
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Investigation 2.2b – Discussion continued

3. of a dozen donuts have been eaten. 

This situation illustrates fractions as an operator on the 
set of donuts, because we take 3 out of every 4 donuts in a 
box of 12 donuts.

In this case, the whole is 12 donuts (what we are taking of), 
and the unit is 1 dozen (because we use “1” to represent a 
dozen donuts). Taking of the 12 donuts is 9 donuts, which 
is of the dozen.
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Investigation 2.2b – Discussion continued

This model helps us to understand equivalent fractions like
which we will explore more in depth later in this 

section. Figure 2.9 shows the 9 out of 12 donuts, or
of the dozen, which is equivalent to 3 columns out of 4 
columns, or of the dozen.

Figure 2.9
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Investigation 2.2b – Discussion continued

This type of visual model is called a set model since the set 
of objects (the 12 donuts) is the whole. While the area and 
linear models are a size relationship (in other words the 
areas or lengths are divided into equal-size pieces), the set 
model is not a size relationship.

We can talk about of a set of animals or of a set of 
shapes. In these examples, the size of the objects is not 
relevant; the whole is the number of objects, not the size. 
Any collection of objects (blocks, candies, fruits, and so on) 
can be used as set models.
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Investigation 2.2b – Discussion continued

4. At a college, of the students are women.

This situation illustrates fractions as a ratio. We do not 
know the total number of students in the college, which is 
the whole, but we do know that if we divided the total 
number of students into four groups with equal numbers of 
students in each, then the number of women would be three 
of those four groups.

Sometimes we might see this relationship in ratio notation: 
the ratio of women to total number of students is 3 ∶ 4.
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Investigation 2.2b – Discussion continued

Figure 2.10 shows this relationship visually.

Figure 2.10

Because the whole is a set of students, this is related to a 
set model (even though in this situation we do not know 
how many are in that set). The whole is the total number of 
students.
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Fractions in History
What do these contexts have in common?

There are certain important ideas that are in all four 
contexts:
• Each context can be interpreted in part–whole 

relationships. In each case a whole has been divided into 
four parts.

• Something is to be partitioned into parts of equal size 
(value). The something can have a value of 1, in which 
case the unit = the whole. The something can have a 
value ≠ 1, in which case the unit ≠ the whole
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Fractions in History
• The numerator and denominator are like codes that tell 

us about the relative sizes of the parts and the unit, and 
the code is multiplicative in nature. For example, when 
we say the relationship is that the value of the 
denominator is twice the value of the numerator. Thus,
has the same value as not

Because in both and the value of the denominator is 
twice the value of the numerator.
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Fractions in History
The unit and the whole are not always the same!
Equating the unit with the whole is one of the most common 
misconceptions that people have about working with 
fractions.

Look back on the four problems posed in connection with 
Figure 2.16 and consider the question: What do we mean 
by “the whole” and by “the unit”?

Figure 2.16
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Fractions in History
The whole is the given object or amount. The unit is that 
amount to which we give a value of 1 ∶ 1 inch, 1 pie, 1 
person. In some cases, the whole and the unit are the 
same. For example, if Lisa gets of a pizza and Liam gets

of the pizza, the whole is 1 pizza, and the unit is also 1 
pizza.

However, if 3 pizzas are divided among 4 people, then the 
whole is 3 pizzas but the unit is 1 pizza. Understanding the 
concept of units and wholes is a major key in understanding 
fractions.
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Investigation 2.2c – Wholes and Units: Sharing Brownies

Five children need to share four brownies. How much does 
each child get? Solve this using visual and/or physical 
models.
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Investigation 2.2c – Discussion
One way to do this is to divide each brownie into fifths and 
give each child four pieces. However, that is not satisfying 
to most children because they want bigger pieces. A 
common solution looks like the figure below. Most children 
have no trouble saying that each child gets of a brownie 
and of a brownie, but what is the name for the smallest 
piece that each child gets?
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Investigation 2.2c – Discussion continued

The smallest amount is of a brownie. Children will arrive 
at this conclusion in different ways. Some will partition the 
whole brownie so that all pieces are the same size, while 
others realize that this smallest piece is of a brownie, 
and

When children incorrectly say that the smallest piece is
they are seeing that last quarter of a brownie as the whole 
and that whole has been divided into 5 equal pieces.
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Investigation 2.2c – Discussion continued

However, the value of the denominator of a fraction is 
connected to how many of those pieces it takes to make the 
unit (that which has a value of 1).

In this case, it takes 20 of those small pieces to make 1 
brownie, and thus the size of that smallest piece is
(of 1 brownie). We use an area model (dividing the area of 
the rectangles) to represent the brownies.
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Fractions in History
With whole numbers, counting is simpler. A can of soda is 1 
can; a six-pack of soda is 6 cans. We can count by 1 or by 
6, for example, 24 cans or 4 six-packs. With fractions, we 
are talking about parts of units, and the fraction that our 
amount represents varies depending on the unit. For 
example, 6 inches is 6 inches.

However, if our unit is a foot, 6 inches is of a foot, but if 
our unit is a yard, 6 inches is of a yard. Becoming 
comfortable with unitizing is an important part of developing 
an understanding of fractions.
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Fractions in History
Below are other examples of this concept.

Hour 4 hours is what part 
of a day?

4 hours is of a day.

4 hours is what part 
of a work week?

4 hours is of a 40 
hour work week.

Nickel 1 nickel is what part 
of a dime?

1 nickel is of a dime.

1 nickel is what part 
of a dollar?

1 nickel is of a dollar.
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Investigation 2.2d – Unitizing
Please do the following problems as children who do not 
yet have algorithms might do them. For example, to 
determine of the circles we need to partition them into six 
equivalent groups. When we do this, circles, and five 
groups of three circles represents of the whole.
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Investigation 2.2d – Unitizing continued

(a) Shade of the circles.

(b) Shade of the circles.
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Investigation 2.2d – Unitizing continued

(c) Shade of the circles.
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Investigation 2.2d – Discussion
The whole in each case is the set of 18 circles (which 
makes this a set model). The table and models below help 
show the answers. The second column shows the number 
of circles to shade.

The third column shows how many are in each group when 
we partition the set into the number of equal groups the 
denominator calls for.

For example, to make we must partition the circles into 
six equal groups, and we see that is equivalent to three 
circles.
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Investigation 2.2d – Discussion continued

The fourth column shows us the equivalence of the original 
fraction and our shading. For example, is equivalent to 15 
circles, which is equivalent to of the circles. Work on 
unitizing naturally develops understanding of equivalence, 
which we will explore very soon.

It is important to note that we could get the answers simply 
by using the algorithm:
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Investigation 2.2d – Discussion continued

Here, our goal is more than getting the answer; it is 
traveling the terrain that your future students will walk as 
they develop the ability to work confidently with fractions.
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Investigation 2.2e – Fundraising and Thermometers

An organization has set $300,000 as their fundraising goal. 
A large sign with a big thermometer sits by the street in 
front of the building..

Figure 2.11 shows their progress after 
24 days (on the left) and after 49 days 
(on the right). Describe the progress of 
the fundraiser in as many ways as 
possible.

Figure 2.11
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Investigation 2.2e – Fundraising and Thermometers
continued

The notion of multiple representations and equivalence are 
in the foreground here and are essential for a deeper 
understanding of important mathematical ideas. Answer the 
following questions, each of which represents different 
interpretations and representations of the progress.

A. They are about of the way after 24 days, as shown on 
the thermometer on the left. Describe how one might 
arrive at this answer.
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Investigation 2.2e – Fundraising and Thermometers
continued

B. If the progress of the fundraiser continues at the rate it 
did during the first 24 days, how long will it take them to 
reach their goal?

C. Determine a fraction to represent their progress after 49 
days.

D. About how many dollars have they raised after 49 days? 
Can you determine this answer mentally?

E. If progress of the fundraiser continues at the rate it did 
during the first 49 days, how long will it take them to 
reach their goal?
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Investigation 2.2e – Discussion
A. The length of the thermometer (a linear measure) is the 

whole of this linear model. You could trace the picture on 
a piece of paper and fold. You could use the amount that 
is shaded as a ruler and see how many of these lengths 
fill the thermometer. In this case, you are using this 
length as your unit and it takes about four of that length 
to make the whole.

B. If they have made of their goal in 24 days, then they 
would make their goal in 4 × 24 = 96 days, or just over 
three months.
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Investigation 2.2e – Discussion continued

C. We could use the nonshaded length as our unit. 
Realizing that it is we would conclude that the 
organization has reached of their goal after 49 days. 
We could also estimate thirds, then fourths, then fifths, 
and so on, until one division seems appropriate.

D. of $300,000 is $250,000. Here is one way to determine 
the amount mentally. First, we can see that of 300,000 
is 50,000. Then we multiply 50,000 by 5 to get 250,000.
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Investigation 2.2e – Discussion continued

E. If is equivalent to 49 days, then is equivalent to 
about 10 days ( of 49 is about 10). If
is equivalent to about 10 days, then is equivalent to 
about 60 days.
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Investigation 2.2f – Partitioning with Number Line Models

A. Place on this number line.

B. Determine the value of x on the number line.

C. Locate on the number line.
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Investigation 2.2f – Discussion
A. This question requires you to grapple with the difference 

between the unit and the whole. In this case, the whole 
and the unit are not the same. This is important, because 
the meaning of the denominator is in relation to the unit.

That is, to find the location of we do not take the whole 
line and divide it into six equal lengths. Rather, we first 
must determine the unit length and then divide that 
length into six equal lengths. 
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Investigation 2.2f – Discussion continued

This difference between the whole and the unit cannot 
be overemphasized.

B. We can deduce that if represents two partitions from 
zero, then one partition from zero would be
Now, we can see the location of
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Investigation 2.2f – Discussion continued

C. In this case, represents eight partitions to the right of 
zero. Thus, four partitions would have a value of
and two partitions would have a value of So the location 
of is 5 × 2 = 10 partitions to the right of zero.

As you will discover when you teach children, it is important 
to explore concepts with different models. Now we will 
investigate fractions with area models, which are often 
encountered in elementary schools with Geoboards, fraction 
circles or rectangles, and pattern blocks.
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Investigation 2.2g – Partitioning with Area Models

A. If show

B. Determine what fraction of the Geoboard is covered.

C. If the area of the two hexagons equals one unit, what 
fraction does the area of the two blue parallelograms 
equal?
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Investigation 2.2g – Discussion
A. Divide the rectangle into five equal regions, and shade 

in four of them. The area of these four regions
of the area of the whole rectangle.

B. In the first case, the value of the entire Geoboard is 16 
(unit squares). We can decompose the polygon into 
squares and triangles whose value is clearly (square).
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Investigation 2.2g – Discussion continued

When we count the squares and squares, we have a 
value of 8, and thus the shape covers or of the area 
of the Geoboard.

C. The lines help us to see that two of the blue parallelograms 
cover of the area of the two hexagons.

Finally, let us investigate fractions with set models.



58

Investigation 2.2h – Partitioning with Set Models

A. If show

B. If show 1.
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Investigation 2.2h – Discussion
A. To make sense of this question, we must partition the 

dots into six equal-size groups. Recall the partitioning 
model of whole-number division. 

We then take five of those groups to show [Figure 2.12].

Figure 2.12a
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Investigation 2.2h – Discussion continued

B. There are different ways to make sense of this situation 
and answer the question. For example, we can focus on 
the numerator, which indicates that we have four equal 
parts. Thus, each part—that is, —contains two dots. 
When we then focus on the denominator, we find that 
three of these equal parts represent the unit (that is, 
three of those parts have a value of one).

Figure 2.12b
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Investigation 2.2i – Determining an Appropriate Representation

Jose paid $12 for a box of chocolates that weighed pound. 
What is the price of one pound (at this rate)?
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Investigation 2.2i – Discussion
An area model is one possible representation, because 
boxes of chocolates are often rectangular in shape. If we 
look at the box in terms of weight, we have of a pound. If 
we look at the box in terms of money, it costs $12. In one 
sense, we are saying that of a pound is equivalent to $12.

Thinking of the problem as “we have three 
parts, which are equivalent to $12,” the 
model helps us see that each part (that is, 
each quarter-pound) has a value of $4 
(Figure 2.13), and so one pound will cost 
$16. Figure 2.13



63

Equivalent Fractions
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Equivalent Fractions
Having opened the concept of equivalent fractions in 
Investigation 2.2d, let us now examine the concept of 
equivalent fractions.

Equivalence
• What does equivalent mean?
• Where else have you encountered the notion of 

equivalence in mathematics and in life outside school?
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Equivalent Fractions
One way of looking at “equivalent” comes from taking apart 
the actual word: equivalent, or equal value. We use this 
notion with regrouping whole numbers; for example, 1 ten 
and 2 ones is equivalent to 12 ones. You use equivalence 
with money every day; for example, one quarter is 
equivalent to 25 pennies.

Two fractions are equivalent fractions if they have the 
same value.
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Equivalent Fractions
Using models
Can you illustrate the equivalence of using one or 
more of the fraction models we have discussed: area, 
length, or set?

We can use the set model to illustrate equivalence. For 
example, consider a set of 8 dots [Figure 2.14(a)].

Figure 2.14(a)
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Equivalent Fractions
If we take 6 of them, we literally have [Figure 2.14(b)].

Figure 2.14(b)

However, we can also partition this set of 8 dots into 4 equal 
groups of 2 dots; if we then take 3 of these 4 equal groups, 
we have, by definition, taken of the set [Figure 2.14(c)].

Figure 2.14(c)



68

Equivalent Fractions
Take a piece of paper and fold it in half. Then fold it in half 
again. [Note: There are several ways to do this.] Shade 3 of 
the 4 regions to show Now fold the paper in half again. 
Now we see that the paper has been folded into 8 regions 
and that 6 are shaded. 

Thus, that is, these two fractions represent the same 
part of the whole. This is an area model since of the area 
is the same size as of the area of the rectangle 
represented by the piece of paper.
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Equivalent Fractions
Pictorially, one way the paper folding could look is in 
Figure 2.15.

Figure 2.15

We can also use a linear model, like the bar model below. 
Here we take a linear bar, divide it into fourths (shown in 
orange), and then subdivide each fourth (shown in blue) to 
show that
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Patterns in Equivalent Fractions
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Patterns in Equivalent Fractions
Patterns in a sequence
Look at the sequence of equivalent fractions below. What 
patterns do you notice? What is the next fraction in the 
sequence? Why?

Some of the patterns include:
1. As we move from one fraction to another, the numerator 

increases by three and the denominator increases by 
four. In this sense, the acts as an operator.
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Patterns in Equivalent Fractions
2. The numerator of each of the fractions is a multiple of 

three, and the denominator of each of the fractions is the 
same multiple of four.

3. All the denominators are even numbers, and every other 
numerator is an even number.

We can translate the first statement into notation:

Specific example:
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Patterns in Equivalent Fractions

More general case:

We can also translate the second statement into notation:

Specific example:

More general case:
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Addressing a Common Difficulty in 
Language
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Addressing a Common Difficulty in Language

When trying to explain why are equivalent, many 
students use the word divide—for example, “We divided the 
rectangle in half, and now there are 8 equal regions 
compared to 4 before.”

This choice of words is interesting and points to a problem 
that many children have in trying to understand equivalent 
fractions at a conceptual level. When we look at why 
fractions are equivalent, we commonly encounter this word 
divide.
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Addressing a Common Difficulty in Language

However, in the procedure for creating equivalent fractions, 
we multiply the top and bottom by the same number! If we 
physically divide, why do we mathematically multiply?

The answer to this question has to do with the reciprocal 
relationship between multiplication and division.
Figure 2.16(a) shows

Figure 2.16(a)



77

Addressing a Common Difficulty in Language

If we divide each of the regions by 2, we are also multiplying 
the total number of regions by 2 [Figure 2.16(b)].

Figure 2.16(b)

We now have 6 out of 8 regions shaded—that is, 
Starting with we could have divided each region into 3 
smaller pieces.
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Addressing a Common Difficulty in Language

By dividing each region into 3 smaller pieces, we are 
multiplying the number of pieces by 3, and we can name 
this shaded amount [Figure 2.16(c)].

Figure 2.16(c)
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Simplest Form
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Simplest Form
A fraction is in simplest form if the numerator and the 
denominator have no common factors (other than 1). You 
may be used to the phrase of “reducing fractions.” The word 
“reduce” means to make smaller.

We are not making the value of the fraction smaller, we are 
just writing the fraction in a simpler way with smaller 
numbers. When children call this “reducing,” it can lead to 
the misconception that the quantity is being made smaller.

The notion of simplifying fractions is clearly connected to 
the concept of equivalent fractions.
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Simplest Form
One important connection is that when we are simplifying 
fractions, we are essentially finding an equivalent fraction in 
which the numerator and denominator are smaller numbers. 
For example,

As has been true for other procedures, there are many 
strategies for simplifying fractions. Before we discuss them, 
simplify the following fractions yourself:
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Simplest Form
Explain your method for each.

One strategy is to divide the numerator and denominator by 
any common factor, not necessarily the greatest common 
factor. For example, you might divide both numerator and 
denominator by four, which produces

A quick glance reveals that this can be simplified further to
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Simplest Form
Another strategy is to determine the prime factorization of 
each number and then cross out the common factors.

Let us examine more closely what happens when we are 
able to simplify the fraction in one step, as we did earlier to 
simplify
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Simplest Form
What is the relationship between the divisor and the original 
numerator and denominator in each of the three fractions 
given above

In each case, to simplify the fraction in one step, we divide 
both the numerator and the denominator by their greatest 
common factor. Let’s explore this concept of greatest 
common factor a little more before continuing with fractions.
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The Greatest Common Factor
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The Greatest Common Factor
Think about what each of the words mean in this phrase 
“Greatest Common Factor.” “Greatest,” of course, means 
biggest. “Common” means what the two numbers have in 
common. The word “factor” means numbers that we can 
multiply to get a number.

As an example, the factors of the number 12 are {1, 2, 3, 4, 
6,12} because

1 × 12 = 12
2 × 6 = 12
3 × 4 = 12
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The Greatest Common Factor
Factors of a number are whole numbers that we can 
multiply to get the number. The greatest of these common 
factors is called the greatest common factor (GCF).

We use the notation GCF(a, b) to express the GCF of two 
natural numbers a and b.
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Investigation 2.2j – Methods for Finding the Greatest Common Factor

Let us now investigate how we might determine the 
Greatest Common Factor of two numbers.

A. Concrete/Pictorially find the Greatest Common Factor of 
12 and 8.
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Investigation 2.2j(a) – Discussion
Cuisenaire rods are a manipulative that help us see many 
concepts, including Greatest Common Factor. You can 
also find a virtual version of these at 
https://www.mathplayground.com/mathbars.html. How do 
these models help you see GCF of 12 and 8?

Using Cuisenaire rods, how 
many different ways can you 
make a 12 train and an 8 
train using the same colors
(Figure 2.17).

Figure 2.17
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Investigation 2.2j(a) – Discussion continued

The red rods are 2 in length and the purple rods are 4 in 
length. Because we can use the red 2 rods and the purple 
4 rods to make both the 8 and 12, this tells us that 2 and 4 
are common factors of 8 and 12.

Because the purple 4 rods are the biggest we can use to 
build both 12 and 8, then 4 is the greatest common factor.
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Investigation 2.2j – Methods for Finding the Greatest Common Factor

B. Using only the definition of Greatest Common Factor, 
how would you determine GCF (45, 60)? How does this 
relate to simplifying the fraction Work on this any way 
you want.
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Investigation 2.2j(b) – Discussion
Strategy 1: Use factorization
We could, as we just saw, determine all the factors of each 
number and then find the largest of the common factors:

Factors of 45 = {1, 3, 5, 9,15, 45}
Factors of 60 = {1, 2, 3, 4, 5, 6,10,12,15, 20,30,60}
Common factors = {1, 3, 5,15}

We see from this list that 15 is the GCF of 45 and 60.
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Investigation 2.2j(b) – Discussion continued

To simplify we could divide both the 45 and 60 by any 
of these common factors. However, dividing first by the 
greatest common factor takes the fraction to its simplest 
form in one step.

Strategy 2: Use intuition or number sense
A student who is highly intuitive and has good number 
sense might just know that 15 divides both these numbers. 
The fact that 15 divides both numbers simply means that 15 
is a common factor. How might you reason that, in fact, 15 
is the GCF? Think before reading on….
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Investigation 2.2j(b) – Discussion continued

Let us represent the results of dividing each number by 5 
(which we know is not the GCF) and by 15. What do you 
notice?

45 = 5 · 9 45 = 15 · 3
60 = 5 · 12 60 = 15 · 4

When we divide 45 and 60 by 5, we are left with 9 and 12. 
When we divide 45 and 60 by 15, we are left with 3 and 4. 
One difference between 9 and 12 and 3 and 4 is that 3 and 
4 have no common factors other than 1.
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Investigation 2.2j(b) – Discussion continued

When two numbers have no factors in common other than 
1, they are said to be relatively prime. Because 3 and 4 are 
relatively prime, 15 is the GCF of 45 and 60. Do you see 
why?

Strategy 3: Repeatedly divide by prime numbers
Another procedure involves an adaptation of the long-
division algorithm. The following problem illustrates a 
systematic application in that we begin with the smallest 
prime divisor and then move up. That is, we first divide both 
numbers by 3.
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Investigation 2.2j(b) – Discussion continued

At this point, we move up to 5 because 15 and 20 are both 
divisible by 5. The resulting quotients, 3 and 4, have no 
factors in common. The GCF of 45 and 60 is the product of 
their common factors: 3 · 5 = 15.

Strategy 4: Use prime factorization
This strategy uses a method of breaking a number into its 
prime factors, called the prime factorization. 
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Investigation 2.2j(b) – Discussion continued

We first determine the prime factorization of each number 
and then look for common factors. If we look at the prime 
factorizations of 45 and 60 and circle the factors that the 
two numbers have in common, we have the following:

We can further refine this procedure by using exponents:
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Investigation 2.2j(b) – Discussion continued

The GCF is determined by examining those factors that 
both numbers have in common and then taking the smallest 
exponent in each case. The common factors of 45 and 60 
are 3 and 5. The smallest exponent of 3 is 1, and the 
smallest exponent of 5 is 1. Thus, 3 · 5 is the GCF.

Now, we have several ways to find the greatest common 
factor, which can help us to simplify fractions in one step. 
When working with a fraction like knowing the greatest 
common factor helps us to simplify this in one step by 
dividing by 15 and getting
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Investigation 2.2j(b) – Discussion continued

When simplifying fractions, you can start with any common 
factor. If you do not start with the greatest common factor, 
you will just need to simplify again. This may be easier if 
both numbers making up the fraction are large. In the 
example of we could initially divide top and bottom by 5, 
which would give us

Then we would need to divide again by 3, since 9 and 12 
have a common factor of 3. Notice that the greatest 
common factor of 45 and 60 is 15.
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Investigation 2.2j(b) – Discussion continued

In the second method, we simplified by 5 and then 3; and it 
is not a coincidence that 3 × 5 = 15. In the first method we 
are dividing by 15 in one step, and in the second we are 
dividing by 15 in two steps, since 3 × 5 = 15.
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Investigation 2.2k – Sharing Cookies

A. Aja came home after school one day and found that her 
mother had left a plate of cookies. Aja ate of the 
cookies. When her sister Nolise came home, she ate
of the remaining cookies.

When their mother came home, there were 3 cookies on 
the plate. How many did each girl eat?
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Investigation 2.2k – Sharing Cookies continued

B. Aja came home after school one day and found that her 
mother had left a plate of cookies. Aja ate of the 
cookies. When her sister Nolise came home, she ate
of the remaining cookies, and when Clarise came home, 
she ate of the cookies on the plate. When their mother 
came home, there were 6 cookies on the plate. How 
many did each child eat?
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Investigation 2.2k – Discussion
A. The diagram at the left represents the problem and each 

step. Aja ate of the cookies, and Nolise ate of what 
was left. If what remains is 3 cookies, that means that 3 
cookies represents of what was originally there. Thus, 
there were 12 cookies; Aja ate 6, and Nolise ate 3.

B. Although we could use a similar area model as we used 
in part A, we will use a bar model to solve this one. First, 
we choose a bar to represent the entire cookie jar.
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Investigation 2.2k – Discussion continued

Then we mark off the that Aja ate. Then we mark off
of the remaining to show what Nolise ate. Finally, we 
mark off the of the remaining that Clarise ate and put 
the 6 cookies evenly into the remaining three pieces, and 
we can fill the model from there.

The coding here helps us to communicate the solution.
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Investigation 2.2k – Discussion continued

Aja ate of the cookies. Nolise ate of the remaining 
cookies, and Clarise ate of the remaining cookies. Then, 
there were 6 cookies remaining.
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Equivalence, Benchmarks, and 
Fraction Sense
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Equivalence, Benchmarks, and Fraction Sense

After children have explored fractions with various 
manipulatives, a common investigation is to give them pairs 
or groups of fractions and order them from least to greatest. 
Children begin by referring to physical models, is clearly 
greater than and this can be demonstrated with different 
models.
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Equivalence, Benchmarks, and Fraction Sense

Visuals and manipulatives are powerful tools, but we also 
want students to develop more tools to navigate through 
problems and situations involving fractions. One such tool is 
equivalence. For example, can you explain why
without having to make a picture?

Using equivalence, we can see that Now how do we 
know that
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Equivalence, Benchmarks, and Fraction Sense

Using our knowledge of the meaning of fractions, we know 
that 9ths are smaller than 8ths, and since we have the 
same number of 9ths as 8ths, must be less than

Children will often use the analogy of pizzas in this case: If 
you are hungry, you’d rather have 2 slices of a pizza that 
was divided into 8ths than 9ths.

We can use this idea of equivalences to establish 
benchmarks. Just as powers of 10 serve as benchmarks for 
whole numbers (1, 10, 100, 1000, 10,000, and so on), unit 
fractions, and so on, serve as benchmarks to help 
us keep a sense of the size of fractions.
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Equivalence, Benchmarks, and Fraction Sense

For example, which of these two fractions has a greater 
value:

Where on this number line would be?

Using as our benchmark helps us to determine this.
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Equivalence, Benchmarks, and Fraction Sense

is greater than because because
which puts to the right of and to the left of on the 
number line; therefore,
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Investigation 2.2l – Ordering Fractions

Arrange these fractions from smallest to largest by focusing 
on fraction concepts and reasoning tools.
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Investigation 2.2l – Discussion
There are a variety of ways in which we can validly answer 
the question. We will explore several of these ways with the 
intention of refining or expanding your “fraction sense” 
toolbox.

Some people start by picking two fractions whose order 
they know. In this example, let us start that way. We know 
that

An area diagram would readily show this, or using as a 
benchmark is another way to see this.
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Investigation 2.2l – Discussion continued

We know that is greater than because 3 is more than
of 4; similarly, we know that is less than because 2 is 
less than of 5. Thus, we can conclude that

The next debate concerns How would you explain 
which is larger?

Figure 2.18
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Investigation 2.2l – Discussion continued

Looking at the two fractions, we see that they are both one 
piece away from 1. Sixths are smaller than fourths, so we 
can reason that must be greater than because the 
distance between and 1 is whereas the distance 
between and 1 is (Figure 2.18). We can combine
and to conclude that
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Investigation 2.2m – Estimating with Fractions

In everyday life, we often see parts of a whole and are 
more interested in approximations than exact answers. For 
example, in 2012 the average salary for beginning public 
school teachers in the United States was $35,141, and the 
average salary for all public school teachers was $56,039.

We can look at these numbers from an additive perspective 
and say that the beginning teachers’ salary is about 
$21,000 less than the average for all teachers. If we want 
to turn this into a fraction, we are now reasoning 
multiplicatively. 
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Investigation 2.2m – Estimating with Fractions
continued

If we were to do this, we would ask, “Beginning teachers’ 
salaries is about what fraction of the overall.” Can you 
apply your understanding of fractions (and division!) to find 
a simple fraction (not ) that answers this question?
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Investigation 2.2m – Discussion
To answer this question accurately, we need to apply three 
things we have learned: 
Fraction can be seen as division.
When estimating division problems, we can round both 
numbers up or round both of them down. Look for 
compatible numbers.
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Mixed Numbers
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Mixed Numbers
Up to this point, we have only looked at fractions whose 
value is between zero and one. In many reallife situations, 
we encounter mixed numbers (for example, ) and 
improper fractions (for example, ). When we have a 
fraction that is bigger than one, we can express it as a 
mixed number as well.

A mixed number is a number that has a whole-number 
component and a fraction component. 
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Mixed Numbers
A National Assessment of Educational Progress contained 
the following item:

is the same as:

(a) (b) (c) (d) (e) I don’t know

We can draw a model of this to help by having five wholes 
and of another whole.
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Mixed Numbers
Only 47 percent of the seventh-graders chose the correct 
response, (a). Still more startling, an even smaller 
percentage of eleventh-graders chose the correct 
response—only 44 percent.

This lack of connectedness between concepts and 
procedures can be helped with pictorial representations.
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Investigation 2.2n – Connecting Fractions and Mixed Numbers

Try drawing an area model, a linear model, and a set 
model to explain why

You may remember the procedure for converting a mixed 
number into an fraction. For example, to convert
into a fraction, we do the following:
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Investigation 2.2n – Connecting Fractions and Mixed Numbers
continued

We multiply the whole number by the denominator, then we 
add the numerator, and then we put this number on top of 
the original denominator.

How would you explain the why of this procedure to, let’s 
say, a fourth-grade student? How can the models you drew 
help explain this procedure?
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Investigation 2.2n – Discussion
Examine the area, linear, and set models shown below. 
How are these similar and different from the ones you 
drew?

In each of the representations, we see that the process is 
similar to the kinds of regrouping we did with whole 
numbers. 
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Investigation 2.2n – Discussion continued

In converting from the mixed number to the fraction, we 
need to convert all the units to fourths because in order for 
the fraction, to have meaning, all the pieces must be the 
same size—that is, they must be fourths.

We can convert each one to 4 fourths and 
then add all the fourths to get
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Investigation 2.2n – Discussion continued

However, because one context for multiplication is 
repeated addition, we see that we are adding three 4’s; 
hence, three units times 4 fourths in each unit.

When we add these 12 fourths to the 1 fourth we already 
had, we have a total of 13 fourths. Notice in the set model 
that we chose to put four stars in each set since we were 
working with fourths.
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The Density of the Set of Fractions
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The Density of the Set of Fractions
This activity brings up a question that children sometimes 
ask: Can we name any point on the number line with a 
fraction? What do you think?.

For example, name a fraction between zero and one. If we 
did this with a whole class, we would get a number of 
correct responses, although might be the most common.

Can you name another fraction between zero and ? How 
many can you name?
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The Density of the Set of Fractions
In fact, we can say that between any two fractions, there are 
an infinite number of fractions. Mathematicians refer to this 
property by saying that fractions are dense.

Think of naming any point on a number line, knowing that 
no matter how close two fractions are, we can find an 
infinite number of fractions between those two fractions!


