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What do you think?
• How many words, aside from combine, can you think of 

that describe addition?

• Not having place value, how might the Romans have 
added, for example,
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Contexts for Addition
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Contexts for Addition
1. Andy has 3 marbles, and his older sister Bella gives him 

5 more. How many does he have now?

2. Keesha and José each drank 6 ounces of orange juice. 
How much juice did they drink in all?

3. Linnea has 4 feet of yellow ribbon and 3 feet of red 
ribbon. How many feet of ribbon does she have?

4. Josh has 4 red trucks and 2 blue trucks. How many 
trucks does he have altogether?
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Contexts for Addition
How might a child that did not know addition solve each of 
these problems shown in Figure 3.1 using concrete tools?

Figure 3.1

Concrete Models for Addition

Problems 1 and 4 are easier for most children, because the 
child can see the actual marbles and trucks and count 1, 2, 
3, 4, 5, 6, 7, 8 marbles and 1, 2, 3, 4, 5, 6 trucks. 
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Contexts for Addition
Problems 2 and 3 are more abstract in that the child cannot 
actually see 6 ounces or 4 feet. The child might represent 
the problem with concrete objects, such as 4 buttons for 
the yellow ribbon and 3 buttons for the red ribbon. 

These problems represent two basic contexts in which we 
operate on numbers. Some numbers represent discrete 
amounts, or objects in a set, and some numbers represent 
measured or continuous amounts.
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A Pictorial Model for Addition
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A Pictorial Model for Addition
One of the themes of this book is the power of “multiple 
representations,” and each of the models used above seem 
on the surface to be quite different.

In each case, we are joining two sets or we are increasing 
a set. We can highlight the similarities among all addition 
contexts with the representations in Figure 3.2.

Figure 3.2
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A Pictorial Model for Addition
In general, we can represent any addition a + b = c as 
shown in Figure 3.3.

Figure 3.3

The numbers we are adding are called the addends, and 
the answer we get when we add is called the sum.

What advantages do you see for this general model over 
having no model at all?
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A Pictorial Model for Addition
1. This model captures the way in which all addition 

problems are similar—that is, joining and combining two 
amounts to make a larger amount.

2. This model is also related to the notion of parts and 
wholes, an abstraction that is important in the 
development of whole-number ideas and in 
understanding other mathematical ideas, like fractions.

3. This model also works well whether the elements to be 
combined are sets of discrete objects, like the marbles 
and trucks, or measurements, like the ounces of juice or 
feet of ribbon.
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A Pictorial Model for Addition
4. As we examine all four operations, we will see that we 

can define all four operations in this context. This reveals 
the essential connectedness of the four operations. 
When students see this connectedness, they are likely to 
be more successful with nonroutine and multistep 
problems. Students in Singapore, who consistently rank 
high in standardized math tests taken by students in 
over 100 countries, use similar bar models extensively to 
understand math. We will continue to explore these bar 
models in our discussion of fractions and algebra.
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A Pictorial Model for Addition
It is important to note that understanding part–whole 
relationships with whole numbers allows numbers to be 
interpreted simultaneously as positions on the mental 
number line and as compositions of other numbers. 

For example, 18 is the number after 17 and before 19, but 
18 can also be seen as 10 + 8, 9 + 9, 20 − 2, and so on.
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A Pictorial Model for Addition
Understanding that a number can be composed (put 
together) and decomposed (broken into parts) is essential 
for being able to work confidently with the four operations. 

This notion of composing and decomposing is one of the 
big ideas of elementary mathematics.
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Representing Addition with Number 
Lines
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Representing Addition with Number Lines

Number lines are found on rulers, clocks, graphs, and 
thermometers and can be a nice pictorial representation of 
the operations. 

A number line can be constructed by taking a line (not 
necessarily a straight line) and marking off two points: zero 
(the origin) and one.

The distance from 0 to the point 1 is called the unit 
segment, and the distance between all consecutive whole 
numbers is the same.



17

Representing Addition with Number Lines

Although number lines are most commonly used to 
represent length, they may be used to model all kinds of 
problems. 

For example, we could use a number line to indicate time, 
with each unit representing one unit of time—day, minute, 
year, and so on.
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Moving from Concrete to Abstract
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Moving from Concrete to Abstract
There are several classical stages in children’s 
understanding of addition. At the most basic level, the child 
counts to determine the sum. 

For example, in the first problem, many young children 
would answer the question by putting the marbles on the 
floor and then counting the two groups.

In the next stage of development, the child “counts on.” 
That is, the child begins with the first number and counts 
however many more the second number represents. 
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Moving from Concrete to Abstract
A child solving Problem 1 (see Figure 3.4) in this manner 
would say, “4, 5, 6, 7, 8,” probably keeping track of the 
second number being added (5) with fingers.

Figure 3.4

At the next level, the child realizes that it is possible to 
begin with the larger number (i.e., 3 + 5 = 5 + 3) and 
counts, “6, 7, 8.”
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Moving from Concrete to Abstract
Finally, the child simply knows that 3 + 5 = 8. 

In the diagram at the left in Figure 3.5, we first draw an 
arrow (in this case representing the length of the ribbon) 4 
units long.

Figure 3.5

We draw another arrow 3 units long and connect the two 
arrows. The arrow at the top represents the combined length 
of the two shorter arrows.
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Moving from Concrete to Abstract
In the diagram at the right, we start at the point on the line 
representing the length of the first ribbon and then draw an 
arrow 3 units long (representing the second ribbon). The 
location where the arrow ends tells us the combined length 
of the two ribbons.

Both diagrams represent 4 + 3 on the number line, 
although the one on the left more closely resembles the 
actual laying of the two ribbons end to end.
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Investigation 3.1a – Why Is the Sum of Two Even Numbers an Even Number?

In the 2009 NCTM Yearbook entitled Teaching and 
Learning Proof Across the Grades: A K −16 Perspective, 
Deborah Schifter describes third-graders working on the 
question of how to prove that the sum of two even numbers 
is even. 

Examine the following responses by the students and think 
about whether they constitute a proof:

Paul: I know that the sum is even because my older 
sister told me it always happens that way.
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Investigation 3.1a – Why Is the Sum of Two Even Numbers an Even Number?
continued

Zoe: I know it will add to an even number because 4 + 4 = 8 
and 8 + 8 = 16. 
Evan: We really can’t know! Because we might not know 
about an even number, and if we add it with 2, it might equal 
an odd number!
Melody: (Pointing to two sets of cubes she had arranged) 
This number is in pairs (pointing to the light-colored cubes), 
and this number is in pairs (pointing to the dark-colored
cubes), and when you put them together, it’s still in pairs.
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Investigation 3.1a – Discussion
In what ways are these students communicating their 
understanding, building a logical progression of ideas, and 
using drawings to communicate their thinking? Shifter 
describes four categories of justification common to 
elementary students (and, I find, with college students too):

appeal to authority (Paul),
inference from instances (Zoe),
assertion that claims about an infinite class cannot 
be proven (Evan), and
reasoning from representation or context (Melody).
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Investigation 3.1a – Discussion continued

Do you see these categories in the students? In the 
diagrams below, you can see how Melody’s assertion 
closely parallels a more formal proof.
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Investigation 3.1a – Discussion continued

Schifter asserts that young children are capable of making 
and justifying mathematical generalizations and that 
making arguments from representations (physical objects, 
pictures, diagrams, or story contexts) is an effective way to 
help students develop such reasoning capacity. 

She proposed three criteria for such representations:

1. The meaning of the operation(s) involved is represented 
in diagrams, manipulatives, or story contexts.
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Investigation 3.1a – Discussion continued

2. The representation can accommodate a class of 
examples.

3. The conclusion of the claim follows from the structure of 
the representation.

Do you see how Melody’s argument satisfied these 
criteria?

1. Her representation modeled two whole numbers.
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Investigation 3.1a – Discussion continued

2. Her language did not say 10 + 16 but rather two whole 
numbers. That is, her argument did not depend on the 
actual value of the two numbers (as Zoe’s did). 

3. When you place the two diagrams together, the resulting 
amount can also be represented in pairs.
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Investigation 3.1b – Precision with Definitions and Symbols

A. Which of the following definitions for even numbers is 
more precise? 

Definition one: An even number has 0, 2, 4, 6, or 8 in 
the ones place. 
Definition two: When an even number is divided by 2, 
you get a whole number with none left over.

B. Research has shown that when asked to fill in the blank 
to the following, some students will insert a 5. Why do 
you think they do this?
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Investigation 3.1b – Discussion
A. Although definition one does provide a way to recognize 

even numbers, it is not very precise for a couple of 
reasons. For one, a number like 2.4 would be even 
under the first definition as there is a 2 in the ones 
place. 

However, 2.4 is not an even number. This definition also 
does not tell what an even number really is.

Definition two is more precise because it excludes 
numbers like 2.4 from meeting the definition and it 
explains precisely what an even number is.
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Investigation 3.1b – Discussion continued

B. Some students have the misconception that an equals 
sign is a call to action to perform the operation, instead 
of realizing that the two sides of the equals sign have to 
be balanced. 

These students will see the sign as a call to add 3 + 2 
without paying attention to the 1. For now it is an 
illustration of how the equals sign may not be as intuitive 
as you previously believed.
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Properties of Addition
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Properties of Addition
When young children start to learn about adding, Table 3.1 
has been the traditional method of representing the 100 
“addition facts” that they have to learn.

Table 3.1
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Properties of Addition
It can look imposing to some children! However, 
understanding some properties of addition and base ten 
can unlock its potential as a learning tool. 

As you look at the table, what do you observe (insights or 
patterns) that might make learning the addition facts easier 
for children?

One observation (in children’s language) is that “adding 
zero doesn’t change your answer.”
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Properties of Addition
Mathematicians call this the identity property of addition. 
It is represented in symbols as follows: 

a + 0 = 0 + a = a

We also find that when we add any two numbers, we get 
the same sum regardless of the order in which we added, 
which is the commutative property of addition. 

a + b = b + a
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Properties of Addition
There is another discovery, called “bridging with 10,” that 
makes learning addition easier. 

For example, if you ask a child, “What is 7 + 5?” many 
children will say something like, “7 + 3 is 10 and 2 more is 
12.” Many will intuitively decompose 7 + 5 into 7 + 3 + 2.

If we write this as 7 + (3 + 2) = (7 + 3) + 2, then this leads 
to a third property, called the associative property of 
addition. As another example, 

(37 + 75) + 25 = 37 + (75 + 25).
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Properties of Addition
Formally, we say

(a + b) + c = a + (b + c)

One last property of addition often seems almost trivially 
obvious; it is called the closure property of addition.

The closure property states that the sum of any two whole 
numbers is a unique whole number. There are two parts to 
this property: (1) uniqueness (the sum will always be the 
same number) and (2) existence (the sum will always be a 
whole number).
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Properties of Addition
Not all sets are closed under addition, for example, the set 
of odd whole numbers. 

The sum of two odd numbers is not in the set of odd 
numbers because an odd plus an odd equals an even; 
thus, we say that the set of odd numbers is not closed 
under addition.
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Investigation 3.1c – A Pattern in the Addition Table

Patterns can help make the learning of mathematics easier 
and more interesting. In the addition table, if you look at 
any 2 × 2 matrix (that is, a rectangular array of numbers or 
other symbols), the sums of the numbers in each of the two 
diagonals are equal.

For example, in the matrix to the left, 6 + 8 = 7 + 7. Can 
you justify this pattern mathematically?
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Investigation 3.1c – Discussion
Description 1
Verbally, you can justify this pattern by saying that in any 
2 × 2 matrix in the table, the two numbers in one diagonal 
are always identical and the other two numbers are always 
1 less and 1 more than this number. Therefore, the sum of 
the two other numbers will “cancel out” so that you get the 
“same” sum in either case.

Description 2
We can use some notation to make the description simpler.
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Investigation 3.1c – Discussion continued

Noting that the value of each number increases by 1 each 
time that we move across (or down) the table, we can let x 
represent the number in the top left corner of the diagonal.

Thus, in relation to x, the values of the other three numbers 
are
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Investigation 3.1c – Discussion continued

It is an algebraic exercise to demonstrate that the sum of 
each diagonal is 2x + 2. Going from top left to bottom right, 
we have (x) + (x + 2) = 2x + 2. The other diagonal is 
(x + 1) + (x + 1), which also equals 2x + 2.

Description 3
Yet other students will say that the sums of the diagonals 
are equal because “it’s the same numbers in both cases.” 
What do you think such a student might be seeing? Think 
before reading on. . . .
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Investigation 3.1c – Discussion continued

Let’s say that we are looking at the matrix formed by the 
intersection of the 2 row and the 3 row and the 4 column 
and the 5 column. 

The numbers are 6, 7 and 7, 8. However, if we represent 
the numbers by their origin, we have
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Investigation 3.1c – Discussion continued

The sum of the top-left-to-bottom-right diagonal is (2 + 4) + 
(3 + 5). However, because of the commutative and 
associative properties, this sum is equal to (2 + 5) + (3 + 4). 
In other words, we are indeed using the same numbers! 

We can now generalize this cell by saying that the matrix 
formed by the intersection of the a row and the b row and 
the c column and the d column is

and a + c + b + d = a + d + b + c
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Investigation 3.1c – Discussion continued

Our first work with addition in base ten will be doing some 
addition problems mentally, for a couple of reasons. First, 
this will require you to think carefully about how your 
knowledge of place value applies to adding numbers. 

Second, much of our use of arithmetic does not involve 
pencil and paper or calculators, but rather mental 
computation—when estimating or when it is quicker to do a 
computation or part of a computation in our head than with 
a pencil or calculators.
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Trading versus Carrying and 
Borrowing
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Trading versus Carrying and Borrowing

Most of us learned to use the words “carry” when we add 
and “borrow” when we subtract. We need to change that 
language to be more descriptive and to show the 
similarities between what is happening in each case. 

The following problems illustrate this point.
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Trading versus Carrying and Borrowing

In the addition problem, because 6 + 8 > 9, we put the 4 in 
the ones place and “carry” the 1 to the tens place. 

In the subtraction problem, in order to subtract in each 
place, we need to “borrow” a 1 from the tens place and 
move it to the ones place whose value is now 14. 

Take a minute to write down what is similar or the same 
about both processes and what is different. Also, consider 
what “carrying” and “borrowing” mean in other contexts and 
whether they are really descriptive of this process.
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Trading versus Carrying and Borrowing

What is the same about both is that (1) an amount is 
moved from one place to another, and (2) this amount 
always represents a 10-for-1 exchange (10 ones for 1 ten 
or 1 ten for 10 ones).

What is different is the direction of the exchange. When 
adding, we move the 10 from the smaller place to a 1 in the 
larger place (right to left). When subtracting, we move the 1 
from the larger place to a 10 in the smaller place.
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Investigation 3.1d – Mental Addition

Do the following five computations in your head. Briefly 
note the strategies you used, and try to give names to 
them.

Note: One mental tool all students have is being able to 
visualize the standard algorithm in their heads. For 
example, for the first problem, you could say: “9 + 7 = 16, 
trade for ten, then 5 + 3 = 8 and 8 + 1 traded ten makes 9; 
the answer is 96.”
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Investigation 3.1d – Mental Addition continued

However, because you already know that method, I ask 
you not to use it here but to try others. 

There are actually quicker ways to do this problem in your 
head than using the traditional algorithm. See whether you 
can discover any of them.

1. 39 + 57 2. 68 + 35 3. 66 + 19 4. 545 + 228 
5. 186 + 125
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Investigation 3.1d – Discussion
Leading digit
One strategy that works nicely with most addition problems 
is leading digit.

Some people refer to it as front end because we add the 
“front” of the numbers first. Using leading digit with Problem 
1 looks like this:

39 + 57 = (30 + 50) + (9 + 7) = 80 + 16 = 96.
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Investigation 3.1d – Discussion continued

This strategy can be used with larger numbers too.

545 + 228 = (500 + 200) + (40 + 20) + (5 + 8)= 700 + 60    
+ 13 = 773

Compensation 
Another powerful mental math strategy is called 
compensation. Using compensation with Problem 1 looks 
like this: 39 + 57 = 40 + 56.
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Investigation 3.1d – Discussion continued

Do you see how we transformed 39 + 57 into 40 + 56?
Which other problems lend themselves to this strategy?
Number 3 could also be solved with this strategy: 

66 + 19 = 65 + 20

Break and bridge 
We can use the break and bridge strategy in Problem 2 in 
this way:

68 + 35 = (68 + 30) + 5 = 98 + 5 = 103
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Investigation 3.1d – Discussion continued

Representing this strategy on a number line makes it easier 
for some to understand. We break the second number 
apart (using expanded form) and add one place at a time.

Which other problems lend themselves to this strategy?
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Investigation 3.1d – Discussion continued

Compatible numbers 
Another powerful strategy is creating compatible numbers. 
This often involves seeing pairs of digits whose sum is 10. 

Using compatible numbers with Problem 5 looks like this:

186 + 125 = (180 + 120) + (6 + 5) = 300 + 11 = 311

This works when we see that 180 + 120 = 300.
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Investigation 3.1d – Discussion continued

Choosing a strategy 
Which strategy you use is often a matter of preference. For 
example, Problem 2 (68 + 35) may be done mentally in at 
least four different ways, each of which is the easiest way 
for some students. 

One of your goals as a future teacher is to become 
comfortable with each strategy so that you can support 
learning for all of your students.
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Investigation 3.1d – Discussion continued

Leading digit: 68 + 35 = 60 + 30 + 8 + 5

Compensation: 68 + 35 = 70 + 33

Break and bridge: 68 + 35 = 68 + 30 + 5

Compatible numbers: 68 + 35 = 65 + 35 + 3

Justifying strategies 
Let us look at the compatible numbers strategy for Problem 
2 in detail to connect the mental work with the properties 
we have discussed.
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Investigation 3.1d – Discussion continued
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Children’s Strategies for Addition
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Children’s Strategies for Addition
Here we will focus on the mathematics underlying common 
stages in the child’s development of computation with 
addition. Imagine that you are a child and you haven’t yet 
learned the standard procedure for adding. How might you 
add 48 + 26?

Add up by 10s
Just as you read earlier that one stage in young children’s 
development of addition is to add up, some children begin 
multidigit addition in the same way.
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Children’s Strategies for Addition
They add up by 10s from 48. What they say is “48, 58, 68, 
74.” Some children will struggle a bit from 68 to 74. 

They use 10 as a bridge, and say, “48, 58, 68, plus 2 is 70, 
plus 4 more is 74.” Many children will use a number line to 
explain this strategy.
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Children’s Strategies for Addition
Break the Second Number Apart 
Another variation of adding up is to begin with the first 
number and break the second number into its place value 
parts. That is, they add the tens and then the ones.

48 + 20 = 68
68 +   6 = 74

A number line is a useful representation of this strategy.
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Children’s Strategies for Addition
Use Partial Sums 
A very common approach that comes closer to one of the 
standard algorithms is to add, from left to right. In the 
beginning, children often write the partial sums (which are 
the sums of each place). The diagram below illustrates this 
approach with manipulatives.
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Children’s Strategies for Addition
Note that this method is essentially the leading-digit 
method that many people use when adding mentally.

Use Money and Compensate 
Depending on the problem, some children will use other 
frameworks, often money. 

For example, because 48 and 26 are close to a half-dollar 
and a quarter, some children will add 50 and 25 and then 
compensate, since 48 is 2 less than 50 and 26 is 1 more 
than 25.
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Children’s Strategies for Addition
50 + 25 − 2 + 1

This strategy, though it is not applying base ten in this 
problem, is actually quite powerful and can be connected to 
base ten through discussion.

Adding Left to Right 
Constance Kamii and many others who have explored what 
is called a constructivist approach to learning arithmetic 
have found that when children are not just shown how to 
add, the vast majority of children will actually add from the 
largest to the smallest place. 
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Children’s Strategies for Addition
This is very interesting because we read from left to right. 
So, to add 48 and 26 this way, first add 40 + 20 = 60, then 
8 + 6 = 14, so the total is 60 + 14 = 74. 

Once you get the hang of this strategy, it can be much 
faster than other methods.
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Investigation 3.1e – Children’s Strategies for Adding Large Numbers

What if the numbers were bigger—for example, 368 + 574? 
Look back on the approaches described earlier. 

Can you adapt any of them to this problem?
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Investigation 3.1e – Discussion
The “break the second number apart” strategy applies to 
larger numbers.

368 + 500 = 868
868 +   70 = 938
938 +     4 = 942

The “partial sums” strategy also applies.
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Investigation 3.1e – Discussion continued

300 + 500 = 800
60 +   70 = 130
8 +     4 = 12

800 + 130 = 930      and      930 + 12 = 942
The “partial sums” strategy can be modified to “keep each 
sum in its proper place,” which is shown below.
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Children’s Strategies for Addition
Algorithms
A major goal of elementary school is to have students 
become computationally fluent. This means developing 
efficient algorithms for each operation. 

An algorithm is a single, clearly described method that 
works in all cases.

The algorithms that you learned to add, subtract, multiply, 
and divide are not the algorithms but simply four of many.
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Children’s Strategies for Addition
Furthermore, they are not universally used today. 

Some of you, in different parts of the country, learned 
different algorithms, and school children in different parts of 
the world learn very different algorithms for some of the 
operations, especially subtraction. 

So let us examine this notion of algorithm.
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Adding Before Base Ten
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Adding Before Base Ten
Before we begin examining addition in base ten, take a 
moment to think about how people added before base ten 
was invented. Imagine that you were a Roman. 

How might you add these two numbers? Romans couldn’t 
just add the Ⅶ to the Ⅵ and “carry” the III, since it is not a 
place value system. 

They would have to combine the symbols and do some 
rewriting where efficient (such as Ⅴ + Ⅴ = Ⅹ).
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Investigating Addition Algorithms in 
Base Ten
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Investigating Addition Algorithms in Base Ten

The National Assessment of Education Progress (NAEP) 
has found that third-graders’ success in computation 
decreases considerably when they move from two-digit 
problems to three-digit problems. 

Further research indicates that many students are 
memorizing rather than understanding the process. 
Therefore, it is really important that you learn to truly 
understand the processes, rather than memorizing 
algorithms.
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Investigating Addition Algorithms in Base Ten

Add 267 + 133 as you normally would. Can you explain the 
“whys” of each step?

In the context of our base ten numeration system, we are 
combining 2 hundreds, 6 tens, and 7 ones with 1 hundred, 
3 tens, and 3 ones. 

If the student understands the process of combining and 
regrouping, then this problem is not substantially more 
difficult than one with smaller numbers; it is only longer.
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Investigating Addition Algorithms in Base Ten
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Investigating Addition Algorithms in Base Ten

A commonly used algorithm
With this manipulative representation, you can now better 
understand the why of one common algorithm for 
addition.

Step 1
7 + 3 = 10; place the 0 in the ones place and put the 1 
above the tens place, because 7 + 3 is equivalent to 1 ten 
and 0 ones.
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Investigating Addition Algorithms in Base Ten

Step 2
1 + 6 + 3 = 10 (which is really 1 tens plus 6 tens plus 3 tens 
= 10 tens or 1 hundred); place the 0 in the tens place and 
put the 1 above the hundreds place (to represent trading 10 
tens for 1 hundred).

Step 3
1 + 2 + 1 = 4 (which is really 1 hundred plus 2 hundreds 
plus 1 hundred = 4 hundreds); place the 4 in the hundreds 
place.
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Investigating Addition Algorithms in Base Ten

The sum is 400.

Representing the problem in expanded form enables us to 
prove why it works.
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Investigating Addition Algorithms in Base Ten

Seeing how numbers can be composed and decomposed 
makes it possible to understand the algorithm deeply. 

To understand the addition algorithm, we decompose the 
number using expanded form; we can then see how those 
different parts can be reconfigured—composed—to make 
our new whole, that is, the sum.
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Investigation 3.1f – An Alternative Algorithm

As mentioned earlier, when base ten was invented, many 
different algorithms for each operation were invented. One 
algorithm that is a favorite of children is called the lattice 
algorithm. 

Observe the example below and see if you can figure out 
how it works and why it works.
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Investigation 3.1f – Discussion
First, you write the problem, and below each place draw a 
square.

Second, draw diagonal lines through each square that 
extend below the square.

Third, write the result of each partial sum in the box.

Last, add diagonally. If the sum in any diagonal addition 
is greater than 10, trade to the next diagonal just as you 
do with the standard algorithm.
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Investigation 3.1f – Discussion continued

If we represent the problem in terms of the place value of 
each part of the lattice, we see that the lattice “herds” each 
digit to the proper place.
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Investigation 3.1g – Addition in Base Five

Do these addition problems in base five. Concrete models 
or pictorial representations are encouraged to help you 
understand.
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Investigation 3.1g – Discussion

One way to determine the sum, especially if this feels 
awkward, is to count on from 3 just like children do when 
learning to add in base ten. 

When we do this, we get If we represent 
this problem with manipulatives, we have
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Investigation 3.1g – Discussion continued

Because in base five, we trade to the next place value 
when we have five in a place, the five singles become 
one long with zero singles left over. So, 

You might prefer to represent this problem vertically.     
Since there is no trading, the answer is
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Investigation 3.1g – Discussion continued

Since there is trading here, we will solve the problem  
simultaneously with a concrete and pictorial 
representation.
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Investigation 3.1g – Discussion continued

It is important to see the connections between these 
representations.
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Investigation 3.1g – Discussion continued

We have to do some trading in this example. In the ones 
place, we trade five singles for 1 long of five and are left 
with 2 singles in the ones place. 

Then we add the 4 longs + 3 longs + 1 long (the one long 
from the trading), and because we have more than five 
longs, we trade five longs for 1 flat and are left with 2 longs.

This gives us 1 flat and 2 longs and 2 singles; in other 
words,
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Investigation 3.1g – Discussion continued

While you will likely not teach adding in other bases in 
elementary school, this helps us to understand adding in 
base ten. 

The process is the same—the only difference is how many 
we need in one place in order to trade for the next place.
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Investigation 3.1h – Children’s Mistakes

The problem below illustrates a common mistake made by 
many children as they learn to add. 

Understanding how a child might make that mistake and 
then going back to look at what lack of knowledge of place 
value, of the operation, or of properties of that operation 
contributed to this mistake is useful. 

What error on the part of the child might have resulted in 
this wrong answer?

The problem: 38 + 4 = 78
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Investigation 3.1h – Discussion
In this case, it is likely that the child lined up the numbers 
incorrectly:

Giving other problems where the addends do not all have 
the same number of places will almost surely result in the 
wrong answer. For example, given 45 + 3, this child would 
likely get the answer 75.
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Investigation 3.1h – Discussion continued

Given 234 + 42, the child would likely get 654. In this case, 
the child has not “owned” the notion of place value. 
Probably, part of the difficulty is not knowing expanded 
form (for example, that 38 means 30 + 8—that is, 3 tens 
and 8 ones). 

An important concept here is that we need to add ones to 
ones, tens to tens, and so on. Base ten blocks provide an 
excellent visual for this concept as students can literally 
see why they cannot add 4 ones to 3 tens.
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Estimation
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Estimation
Most people now rely on calculators when exact answers 
are needed. However, estimating skills are still very 
important in cases where an exact answer is not needed 
and to check the reasonableness of results obtained on the 
calculator. 

Estimation, in turn, requires good mental arithmetic skills, 
which come from an understanding of the nature of the 
operations, a firm understanding of place value, and the 
ability to use various properties.
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Estimation
When are numbers estimates and not exact numbers?
Before we examine some methods of estimation, we need to 
understand when numbers represent estimates and when 
they represent exact amounts. 

All of the following numbers are estimates or approximations. 
What ways can you see to group them according to why they 
are estimates?

For example, the age of a dinosaur bone is an estimate 
because present dating methods do not enable us to get an 
exact number; in other words, the exact age is unknown.
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Estimation
• A certain dinosaur bone is 65 million years old.

• The number of hungry children in the United States is 16 
million.

• The area of the Sahara Desert is 3,320,000 square miles.

• The mean July temperature in Tucson, Arizona, is 86 
degrees.

• Jane lives 55 miles from the nearest airport.

• My office is 12 feet by 9 feet.
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Estimation
Numbers are estimates when:
1. The exact value is unknown—for example, predictions 

and numbers that are too large or difficult to determine.

2. The value is not constant—for example, population and 
barometric air pressure.

3. There are limitations in measurement—for example, 
when we use measuring tools, there is a limitation to 
how precise we can be.
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Estimation
Rounding
Just as many numbers in everyday life are estimates, many 
numbers are rounded:

• It took Jackie 10 hours to get from Boston to Buffalo.
• Anna gets 34 miles per gallon with her new car.
• Rosie put 2100 miles on her car last month.
• Fred paid $18,000 for his new car.
• The population of Sacramento, California, is 370,000.
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Estimation
The preceding examples bring another question to mind: 
Why do we round?
1. Rounding makes comprehension easier.

2. Rounding makes computation easier.

When do we use estimation and when do we use exact 
computation?

Following are several examples of when people generally 
estimate: 
• Making a budget—cost of college, cost of food per month
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Estimation
• Determining the cost of a trip or vacation—ski trip, 

camping trip, trip to Europe

• Deciding which to buy—a new car or a used car

• Determining time—how long to get to . . .

• Determining whether we have enough money—being at 
the grocery store when short on cash

• Deciding how much the tip should be (at a restaurant)

• Determining how long the paper or project will take
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Estimation
Estimation methods 
As you will find in this chapter, we do not estimate in the 
same way in all situations. The method(s) we use to 
estimate depend partly on how close the estimate has to be 
and on whether we want to over- or underestimate 
deliberately.
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Estimation Strategies for Addition
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Estimation Strategies for Addition
Here we will analyze some estimation problems to 
understand better the application of base ten concepts and 
mental math strategies.
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Investigation 3.1i – What Was the Total Attendance?

A. Approximately what was the total attendance for the 
following three football games at Tiger Stadium? 
75,145 34,135       55,124
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Investigation 3.1i – Discussion
Remember that one of the main goals of the investigations 
is for you to develop a repertoire of strategies.

Leading digit: Add the “leading digits” 
7 + 3 + 5 = 15; that is, 150,000 

The leading-digit method used alone 
will always give you an estimate that is 
lower than the actual sum.
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Investigation 3.1i – Discussion continued

Refined leading digit: Add the leading digits as above, 
then also add the next digits, 
and then add these together. 
150,000 + (5 + 4 + 5 = 14—that 

is, 14,000)  
= 150,000 + 14,000 = 164,000

Rounding: Round to the nearest ten 
thousand. 
80,000 + 30,000 + 60,000 
= 170,000
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Investigation 3.1i – Discussion continued

Compatible numbers: Round to numbers that are 
“compatible” or easy to add. 
75 + 35 + 55 = 110 + 55 = 165, 
which represents 165,000
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Investigation 3.1i – What Was the Total Attendance?

B. Approximately what was the total attendance for the 
following three baseball games at Wrigley Field in 
Chicago?
32,425 31,456      34,234
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Investigation 3.1i – Discussion
Each of the four methods above could have been used 
here. You may well have come up with another strategy 
called clustering, because all three numbers are relatively 
close together. 

In this case, a very quick, rough estimate would be
30,000 × 3 = 90,000

If we use a refined leading-digit strategy, we can get 
90,000 + 7000, and looking at the 425, 456, and 234, we 
can see that this is about 1000.
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Investigation 3.1i – Discussion continued

Thus, a more refined estimate is about 98,000.

Looking back 
There are two points to keep in mind when estimating and 
doing mental mathematics:

1. The method you use is often partially determined by the 
problem itself. If you want only a rough estimate, you 
might use leading digit or rounding. If you want a more 
refined estimate, you might use compatible numbers.
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Investigation 3.1i – Discussion continued

If you want to make sure you have enough money, you 
might round everything up so that the estimated sum is 
definitely greater than the actual sum. 

2. If you have a large repertoire of estimating and mental 
math techniques in your toolbox, you will be more skillful, 
and in a class of 20 children, you will see many different 
strategies.
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Investigation 3.1j – Estimating by Making Compatible Numbers

Using compatible numbers is an effective strategy to 
estimate the following sums. Try this on your own and then 
check below.

A. B.
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Investigation 3.1j – Discussion
A. In this case, a quick glance shows us that 38 and 65 will 

make a sum close to 100, and so will 72 + 27. If we see 
this, our estimate of 200 + 89 = 289 is quite close to the 
actual answer of 291.
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Investigation 3.1j – Discussion continued

B. Using compatible numbers, we can estimate               
200 + 500 + 1000 = 1700.
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Number Sense
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Number Sense
Number sense involves the ability:

1. To take numbers apart and put them together.
2. To move fluently among different representations.
3. To recognize when one representation is more useful 

than another.
4. To perform mental computation and estimation flexibly.
5. To determine whether an answer is reasonable.
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Number Sense
In each section of this chapter, we will investigate problems 
that will help to further develop your number sense. It is 
important to note that number sense is being developed 
throughout; however, we will use some problems to focus 
explicitly on number sense.
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Investigation 3.1k – Number Sense with Addition

A. I’m thinking of 3 numbers whose sum is greater than 70. 

Tell whether each of the following must be true, might be 
true, can’t be true: 
1. All three numbers are greater than 20.
2. If two of the numbers are less than 20, the other must be 

greater than 20.

There are generally two ways to proceed. One is to try to 
explain why it must be true. Another is to find a 
counterexample to demonstrate that the statement is not 
true.
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Investigation 3.1k – Discussion
1. Here is a counterexample: 10 + 30 + 40 = 80. The sum is 

greater than 70, but only two of the three numbers are 
greater than 20. So, this statement might be true (as in 
the case of 25 + 30 + 30), but it is not always true as this 
counterexample proves.

2. Here we can proceed logically. What if the two numbers 
less than 20 are 19? Then their sum is 38 and the third 
number must be at least 33. Do you see why? If the two 
numbers are less than 19, then the third number will 
have to be more than 33. Therefore, this statement is 
true.
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Investigation 3.1k – Number Sense with Addition

B. Take no more than 5 to 10 seconds to determine 
whether this answer is reasonable. Make your 
determination without doing any pencil-and-paper work.



125

Investigation 3.1k – Discussion
If we look at the leading digits, we see that they add up to 
17 (meaning 17,000). 

A very quick look at the rest of the amounts lets us quickly 
see that the answer must be greater than 17,214, and thus 
this answer is not reasonable.
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Investigation 3.1k – Number Sense with Addition

C. Place > or < in the circle. Quickly look at the numbers on 
the left and right of the circle. Determine which symbol is 
appropriate. 

563 + 924 + 723 842 + 646 + 558
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Investigation 3.1k – Discussion
The leading-digit method is useful again: 5 + 9 + 7 = 21, 
whereas 8 + 6 + 5 = 19; therefore, 

563 + 924 + 723 > 842 + 646 + 558.


