Exponential and Logarithmic Functions

Copyright © Cengage Learning. All rights reserved.

Graphs of Logarithmic Functions

Copyright © Cengage Learning. All rights reserved.

The graph of a logarithmic function can be drawn by using the relationship between the exponential and logarithmic functions.

To graph $g(x) = \log_2 x$, think of the function as the equation $y = \log_2 x$.

$$g(x) = \log_2 x$$
$$y = \log_2 x$$

Write the equivalent exponential equation.

$$x = 2^{y}$$

Because the equation is solved for x in terms of y, it is easier to choose values of y and find the corresponding values of x. The results can be recorded in a table.

$x = 2^{y}$	У
$\frac{1}{4}$	-2
$\frac{1}{2}$	-1
1	0
2	1
4	2

Graph the ordered pairs on a rectangular coordinate system.

Connect the points with a smooth curve.

Applying the vertical line and horizontal line tests reveals that $g(x) = \log_2 x$ is the graph of a 1–1 function.

Graph. A. $f(x) = \log_3 x$ B. $f(x) = 2 \log_3 x$

Solution:

$$A. \quad f(x) = \log_3 x \\ y = \log_3 x$$

 $x = 3^{y}$

Substitute y for f(x).

Write the equivalent exponential equation.

cont'd

Choose values of *y*, and find the corresponding values of *x*. Graph the ordered pairs on a rectangular coordinate system. Connect the points with a smooth curve.

B.
$$f(x) = 2 \log_3 x$$
$$y = 2 \log_3 x$$
$$\frac{y}{2} = \log_3 x$$
$$x = 3^{\frac{y}{2}}$$

Substitute y for f(x).

Solve the equation for $\log_3 x$.

Write the equivalent exponential equation.

cont'd

Choose values of *y*, and find the corresponding values of *x*. Graph the ordered pairs on a rectangular coordinate system. Connect the points with a smooth curve.

$x=3^{\frac{y}{2}}$	У
$\frac{1}{9}$	-4
$\frac{1}{3}$	-2
1	0
3	2

