

Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved.

2 Factor completely

Trinomials of the form $x^2 + bx + c$, where *b* and *c* are integers, are shown below.

$x^2 + 9x + 14$,	b = 9,	<mark>c</mark> = 14
$x^2 - x - 12$,	<u></u> <i>b</i> = −1,	<mark>c</mark> = −12
$x^2 - 2x - 15$,	<u></u> <i>b</i> = −2 ,	<mark>c</mark> = −15

Some trinomials expressed as the product of binomials are shown at the right. They are in factored form.

Trinomial	Factored Form
$x^2 + 9x + 14 =$	(x+2)(x+7)
$x^2 - x - 12 =$	(x + 3)(x - 4)
$x^2 - 2x - 15 =$	(x+3)(x-5)

POINTS TO REMEMBER IN FACTORING $x^2 + bx + c$

- 1. In the trinomial, the coefficient of x is the sum of the constant terms of the binomials.
- 2. In the trinomial, the constant term is the product of the constant terms of the binomials.
- 3. When the constant term of the trinomial is positive, the constant terms of the binomials have the same sign as the coefficient of x in the trinomial.
- 4. When the constant term of the trinomial is negative, the constant terms of the binomials have opposite signs.

Example 1

Factor: $x^2 + 18x + 32$

Solution:

Factors of 32	Sum
1, 32 2, 16	33 18
4, 8	12

Try only positive factors of 32 [Point 3].

Once the correct pair is found, the other factors need not be tried.

 $x^2 + 18x + 32 = (x + 2)(x + 16)$ Write the factors of the trinomial.

Check:

$$(x + 2) (x + 16) = x^{2} + 16x + 2x + 32$$
$$= x^{2} + 18x + 32$$

Not all trinomials can be factored when using only integers. Consider the trinomial $x^2 - 6x - 8$.

Factors of -8	Sum
$ \begin{array}{c} 1, -8 \\ -1, 8 \\ 2, -4 \end{array} $	-7 7 -2
-2, 4	2

Because none of the pairs of factors of -8 has a sum of -6, the trinomial is not factorable using integers.

The trinomial is said to be **nonfactorable over the integers**.

Factor completely

A polynomial is **factored completely** when it is written as a product of factors that are nonfactorable over the integers.

The first step in *any* factoring problem is to determine whether the terms of the polynomial have a *common factor*. If they do, factor it out first.

Factor: $3x^3 + 15x^2 + 18x$

Solution:

The GCF of $3x^3$, $15x^2$, and 18x is 3x.

Find the GCF of the terms of the polynomial.

 $3x^3 + 15x^2 + 18x = 3x(x^2) + 3x(5x) + 3x(6)$ Factor out the GCF.

$$= 3x(x^2 + 5x + 6)$$

Factors of 6	Sum
1, 6	7
2, 3	5

Write the polynomial as a product of factors.

Factor the trinomial $x^2 + 5x + 6$. Try only positive factors of 6.



cont'd

 $3x^3 + 15x^2 + 18x = 3x(x + 2)(x + 3)$

Check:

 $3x(x+2) (x+3) = 3x(x^2 + 3x + 2x + 6)$

$$= 3x(x^2 + 5x + 6)$$

$$= 3x^3 + 15x^2 + 18x$$