Linear Functions and Inequalities in Two Variables

Copyright © Cengage Learning. All rights reserved.

CHAPTER

Copyright © Cengage Learning. All rights reserved.

- 1 Distance and midpoint formulas
- ² Graph an equation in two variables

Before the 15th century, geometry and algebra were considered separate branches of mathematics. That changed when René Descartes, a French mathematician who lived from 596 to 1650, founded **analytic geometry**. In this geometry, a *coordinate system* is used to study relationships between variables.

A **rectangular coordinate system** is formed by two number lines, one horizontal and one vertical, that intersect at the zero point of each line. The point of intersection is called the **origin**. The two lines are called **coordinate axes**, or simply **axes**.

The axes determine a **plane**, which can be thought of as a large, flat sheet of paper. The two axes divide the plane into four regions called **quadrants**. The quadrants are numbered counterclockwise from I to IV.

Each point in the plane can be identified by a pair of numbers called an **ordered pair**. The first number of the pair measures a horizontal distance and is called the **abscissa**.

The second number of the pair measures a vertical distance and is called the **ordinate**. The **coordinates** of the point are the numbers in the ordered pair associated with the point.

The abscissa is also called the **first coordinate**, or *x***-coordinate**, of the ordered air, and the ordinate is also called the **second coordinate**, or *y***-coordinate**, of the ordered pair.

When drawing a rectangular coordinate system, we often label the horizontal axis *x* and the vertical axis *y*. In this case, the coordinate system is called an *xy*-coordinate system. To graph or plot a point in the *xy*-coordinate system, place a dot at the location given by the ordered pair.

The **graph of an ordered pair** is the dot drawn at the coordinates of the point in the *xy*-coordinate system.

The points whose coordinates are (3, 4) and (-2.5, -3) are graphed in the figure.

The points whose coordinates are (3, -1) and (-1, 3) are graphed in the figure. Note that the graphs are in different locations. The *order* of the coordinates of an ordered pair is important.

The distance between two points in an *xy*-coordinate system can be calculated by using the Pythagorean Theorem.

PYTHAGOREAN THEOREM

If a and b are the lengths of the legs of a right triangle and c is the length of the hypotenuse, then $a^2 + b^2 = c^2$.

Consider the two points and the right triangle shown below. The vertical distance between $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is $|y_2 - y_1|$. The horizontal distance between the points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is $|x_2 - x_1|$.

THE DISTANCE FORMULA

If $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ are two points in the plane, then the distance d between the two points is given by

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Example 1

Find the exact distance between the points whose coordinates are (-3, 2) and (4, -1).

Solution:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Use the distance formula.

$$= \sqrt{[4 - (-3)]^2 + (-1 - 2)^2} \qquad \begin{array}{l} (x_1, y_1) = (-3, 2) \text{ and} \\ (x_2, y_2) = (4, -1). \end{array}$$

cont'd

$$=\sqrt{7^2 + (-3)^2} = \sqrt{49 + 9}$$
$$= \sqrt{58}$$

The distance between the points is $\sqrt{58}$.

See the following graph.

The **midpoint of a line segment** is equidistant from its endpoints. The coordinates of the midpoint of the line segment P_1P_2 are (x_m, y_m) . The intersection of the horizontal line segment through P_1 and the vertical line segment through P_2 is Q, with coordinates (x_2, y_1) .

THE MIDPOINT FORMULA

If $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ are the endpoints of a line segment, then the coordinates (x_m, y_m) of the midpoint of the line segment are given by

$$x_m = \frac{x_1 + x_2}{2}$$
 and $y_m = \frac{y_1 + y_2}{2}$

Example 2

Find the coordinates of the midpoint of the line segment with endpoints $P_1(-5, 4)$ and $P_2(1, -3)$.

Solution:

The coordinates of the midpoint are $\left(-2, \frac{1}{2}\right)$.

See the following graph.

cont'd

The *xy*-coordinate system is used to graph equations in two variables. Examples of equations in two variables are shown below.

$$y = 3x + 7$$

$$y = x^{2} - 4x + 3$$

$$x^{2} + y^{2} = 25$$

$$x = \frac{y}{y^{2} + 4}$$

A solution of an equation in two variables is an ordered pair (x, y) whose coordinates make the equation a true statement.

In general, an equation in two variables has an infinite number of solutions. By choosing any value of *x* and substituting that value into the equation, we can calculate a corresponding value of *y*.

Example 3

Determine the ordered-pair solution of $y = \frac{x}{x-2}$ that corresponds to x = 4.

Solution:

$$y = \frac{x}{x-2}$$
$$y = \frac{4}{4-2}$$

r

Replace x by 4 and solve for y.

y = 2

The ordered-pair solution is (4, 2).

The ordered-pair solutions of an equation in two variables can be graphed in a rectangular coordinate system.

Every ordered pair on the graph of an equation is a solution of the equation, and every ordered-pair solution of an equation gives the coordinates of a point on the graph of the equation.

Graph $y = \frac{1}{2}x + 1$ by plotting the solutions of the equation when x = -4, -2, 0, 2, and 4, and then connecting the points with a smooth graph.

Determine the ordered-pair solutions (x, y) for the given values of x. Plot the points and then connect the points with a smooth graph.

x	$y = \frac{1}{2}x + 1$	у	(x, y)
-4	$y = \frac{1}{2}(-4) + 1 = -1$	-1	(-4, -1)
-2	$y = \frac{1}{2}(-2) + 1 = 0$	0	(-2, 0)
0	$y = \frac{1}{2}(0) + 1 = 1$	1	(0, 1)
2	$y = \frac{1}{2}(2) + 1 = 2$	2	(2, 2)
4	$y = \frac{1}{2}(4) + 1 = 3$	3	(4, 3)

