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Polyhedrons and 

Spheres 
9.4 
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POLYHEDRONS 
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Polyhedrons 

When two planes intersect, the angle formed by two  

half-planes with a common edge (the line of intersection) is 

a dihedral angle.  

 

The angle shown in Figure 9.38 is such an angle.  

Figure 9.38 
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Polyhedrons 

In Figure 9.38, the measure of the dihedral angle is the 

same as that of the angle determined by two rays that 

 

1. have a vertex (the common endpoint) on the edge. 

 

2. lie in the planes so that they are perpendicular to the 

    edge. 
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Polyhedrons 

A polyhedron (plural polyhedrons or polyhedra) is a solid 

bounded by four or more plane regions.  

 

Polygons form the faces of the solid, and the segments 

common to these polygons are the edges of the 

polyhedron.  

 

Endpoints of the edges are the vertices of the polyhedron. 

 

When a polyhedron is convex, each face determines a 

plane for which all remaining faces lie on the same side of 

that plane. 
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Polyhedrons 

Figure 9.39(a) illustrates a convex polyhedron, and  

Figure 9.39(b) illustrates a concave polyhedron. In the 

concave polyhedron, at least one diagonal lies in the 

exterior of the polyhedron. 

Figure 9.39 

Concave polyhedron Convex polyhedron 

(b) (a) 
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Polyhedrons 

The prisms and pyramids were special types of  

polyhedrons. 

 

For instance, a pentagonal pyramid can be described as a 

hexahedron because it has six faces. 

 

Because some of their surfaces do not lie in planes, the 

cylinders and cones are not polyhedrons. 
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Polyhedrons 

Leonhard Euler (Swiss, 1707–1763) found that the number 

of vertices, edges, and faces of any polyhedron are related 

by Euler’s equation.  
 

This equation is given in the following theorem, which is 

stated without proof. 
 

 

Theorem 9.4.1 (Euler’s Equation) 

The number of vertices V, the number of edges E, and the 

number of faces F of a polyhedron are related by the 

equation 
 

   V + F = E + 2 
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Example 1 

Verify Euler’s equation for the  

(a) tetrahedron and 

(b) square pyramid shown in Figure 9.40(a) and (b),    

     respectively. 

Figure 9.40 

(b) (a) 
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Example 1 – Solution 

a) The tetrahedron has four vertices (V = 4),  

six edges (E = 6), and four faces (F = 4). 
 

    So Euler’s equation becomes 4 + 4 = 6 + 2, which is 

true. 

 

b) The pyramid has five vertices (apex + vertices from  

 the base), eight edges (4 base edges + 4 lateral edges), 

 and five faces (4 triangular faces + 1 square base). 
 

 Now V + F = E + 2 becomes 5 + 5 = 8 + 2, which is also 

true. 
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REGULAR POLYHEDRONS 
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Regular Polyhedrons 

Definition 

A regular polyhedron is a convex polyhedron whose 

faces are congruent regular polygons, all of the same type. 

 

There are exactly five regular polyhedrons, named as 

follows: 
 

1. Regular tetrahedron: with 4 faces that are congruent   

    equilateral triangles 

 

2. Regular hexahedron (or cube): with 6 faces that are    

    congruent squares 
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Regular Polyhedrons 

3. Regular octahedron: with 8 faces that are congruent   

    equilateral triangles 

 

4. Regular dodecahedron: with 12 faces that are  

    congruent regular pentagons 

 

5. Regular icosahedron: with 20 faces that are congruent  

    equilateral triangles 
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Regular Polyhedrons 

Four of the regular polyhedrons are shown in Figure 9.41. 

Figure 9.41 

Tetrahedron Hexahedron Octahedron Dodecahedron 

Regular Polyhedrons 

Regular Polyhedrons 
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Regular Polyhedrons 

Because each regular polyhedron has a central point, each 

solid is said to have a center.  

 

Except for the tetrahedron, these polyhedrons have point 

symmetry at the center.  

 

All regular polyhedra have line symmetry and plane 

symmetry as well. 
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Example 2 

Consider a die that is a regular tetrahedron with faces 

numbered 1, 2, 3, and 4. Assuming that each face has an 

equal chance of being rolled, what is the likelihood 

(probability) that one roll produces (a) a “1”? (b) a result 

larger than “1”? 

 

Solution: 

a)  With four equally likely results (1, 2, 3, and 4), the 

     probability of a “1” is    . 
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Example 2 – Solution 

b) With four equally likely results (1, 2, 3, and 4) and three 

“favorable” outcomes (2, 3, and 4), the probability of        

rolling a number larger than a “1” is     . 

cont’d 
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SPHERES 
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Spheres 

Another type of solid with which you are familiar is the 

sphere. Although the surface of a basketball correctly 

depicts the sphere, we often use the term sphere to refer to 

a solid like a baseball as well.  
 

A sphere can be inscribed in or circumscribed about any 

regular polyhedron because it has point symmetry about its 

center. 
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Spheres 

Each characterization of the sphere has its advantages. 
 

     Characterization 1 

In Figure 9.42, a sphere was generated as the locus of  

points in space at a distance r  from point O. The line 

segment       is a radius of sphere O, and      is a diameter 

of the sphere. For the earth, the equator is a great circle 

that separates the earth into two hemispheres. 

 

 

Figure 9.42 
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SURFACE AREA OF A SPHERE 
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Surface Area of a Sphere 

     Characterization 2 

The following theorem claims that the surface area of a 

sphere equals four times the area of a great circle of that 

sphere. This theorem, treats the sphere as a surface of 

revolution. 

 

Theorem 9.4.2 

The surface area S of a sphere whose radius has length r 

is given by S = 4r². 
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Example 3 

Find the surface area of a sphere whose radius is r = 7 in. 

Use your calculator to approximate the result. 

 

Solution: 

   S = 4r ² → S = 4  7² = 196 in² 

 

Then S ≈ 615.75 in². 
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Surface Area of a Sphere 

Although half of a circle is called a semicircle, remember 

that half of a sphere is generally called a hemisphere. 



26 

VOLUME OF A SPHERE 
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Volume of a Sphere 

     Characterization 3 

The third description of the sphere enables us to find its 

volume. To accomplish this, we treat the sphere as the 

theoretical limit of an inscribed regular polyhedron whose 

number of faces n increases without limit. The polyhedron 

can be separated into n congruent pyramids; the center of 

the sphere is the vertex of each pyramid.  
 

 

As n increases, the length of the altitude of each pyramid 

approaches the length of the radius of the sphere. Next we 

find the sum of the volumes of these pyramids, the limit of 

which is the volume of the sphere. 
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Volume of a Sphere 

In Figure 9.43, one of the pyramids  

described in the preceding paragraph  

is shown.  
 

We designate the height of each and  

every pyramid by h.  

 

Where the areas of the bases of the pyramids are written 

B1, B2, B3, and so on, the sum of the volumes of the  

n pyramids forming the polyhedron is 
 

      B1h +     B2h  +     B3h + . . . +    Bnh 

Figure 9.43 
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Volume of a Sphere 

 Next we write the volume of the polyhedron in the form 
 

     h( B1 + B2 + B3 + . . . + Bn) 
 

 As n increases, h → r and B1 + B2 + B3 + . . . + Bn → S, the 

surface area of the sphere. That is, 
 

      h( B1 + B2 + B3 + . . . + Bn) →    rS. 

 

Because the surface area of the sphere is S = 4r ² , the 

sum approaches the following limit as the volume of the 

sphere: 

    V =    r  4r ² =    r ³ 
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Volume of a Sphere 

The preceding discussion suggests the following theorem. 

 

Theorem 9.4.3 

The volume V of a sphere with a radius of length r is given 

by  

   V =     r ³. 
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Example 4 

Find the exact volume of a sphere whose length of radius is 

1.5 in. 

 

Solution:  

This calculation can be done more easily if we replace 1.5 

by     .  
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Volume of a Sphere 

Just as two concentric circles have the same center but 

different lengths of radii, two spheres can also be 

concentric. 

 

Like circles, spheres may have  

tangent lines and secant lines as  

illustrated in Figure 9.45(a). 

Figure 9.45 

Line t is tangent to sphere O  

at point P; line s is a secant. 

(a) 
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Volume of a Sphere 

However, spheres also have tangent planes as shown in 

Figure 9.45(b). In Figure 9.45(c), spheres T and V are 

externally tangent; although no such drawing has been 

provided, two spheres may be internally tangent as well. 

Figure 9.45 

Plane R is tangent 

to sphere Q at point S. 
Spheres T and V are 

externally tangent at point X. 

(c) (b) 
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Volume of a Sphere 

Each solid of revolution was generated by revolving a plane 

region about a horizontal line segment. 

 

It is also possible to form a solid of revolution by rotating a 

region about a vertical or oblique line segment. 
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Example 7 

Describe the solid of revolution that is formed when a 

semicircular region having a vertical diameter of length 

12 cm [see Figure 9.46(a)] is revolved about that diameter. 

Then find the exact volume of the solid formed  

[see Figure 9.46(b)]. 

Figure 9.46 

(a) (b) 
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Example 7 – Solution 

The solid that is formed is a sphere with length of radius      

r = 6 cm.  

 

The formula we use to find the volume is V =    r ³. 

Then V =      6³, which simplifies to V = 288  cm³. 
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More Solids of Revolution 

When a circular region is revolved about a line in the 

circle’s exterior, a doughnut shaped solid results. 
 

The formal name of the resulting solid of revolution, shown 

in Figure 9.47, is the torus. 
 

Methods of calculus are necessary to calculate both the 

surface area and the volume of the torus. 

 

 

 

Figure 9.47 


