

Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved.

Perimeter and Area of Polygons

Definition

The **perimeter** of a polygon is the sum of the lengths of all sides of the polygon.

Table 8.1 summarizes perimeter formulas for types of triangles.

Perimeter and Area of Polygons

Table 8.2 summarizes formulas for the perimeters of selected types of quadrilaterals.

However, it is more important to understand the concept of perimeter than to memorize formulas.

Example 1

Find the perimeter of $\triangle ABC$ shown in Figure 8.17 if:

- a) AB = 5 in., AC = 6 in., and BC = 7 in.
- b) $AD = 8 \text{ cm}, BC = 6 \text{ cm}, \text{ and } \overline{AB} \cong \overline{AC}$

Solution:

- a) $P_{ABC} = AB + AC + BC$
 - = 5 + 6 + 7
 - = 18 in.

Figure 8.17

B

Example 1 – Solution

b) With $\overline{AB} \cong \overline{AC}$, $\triangle ABC$ is isosceles.

Then \overline{AD} is the \perp bisector of \overline{BC} .

If BC = 6, it follows that DC = 3.

Using the Pythagorean Theorem, we have

 $(AD)^2 + (DC)^2 = (AC)^2$

$$8^2 + 3^2 = (AC)^2$$

cont'd

Example 1 – Solution

 $64 + 9 = (AC)^2$

$$AC = \sqrt{73}$$

Now $P_{ABC} = 6 + \sqrt{73} + \sqrt{73} = 6 + 2\sqrt{73} \approx 23.1 \text{ cm}.$

Note: Because x + x = 2x, we have $\sqrt{73} + \sqrt{73} = 2\sqrt{73}$.

cont'd

HERON'S FORMULA

If the lengths of the sides of a triangle are known, the formula generally used to calculate the area is **Heron's Formula.**

One of the numbers found in this formula is the *semiperimeter* of a triangle, which is defined as one-half the perimeter.

For the triangle that has sides of lengths *a*, *b*, and *c*, the semiperimeter is $s = \frac{1}{2}(a + b + c)$.

Heron's Formula

Theorem 8.2.1 (Heron's Formula)

If the three sides of a triangle have lengths *a*, *b*, and *c*, then the area *A* of the triangle is given by

$$A = \sqrt{s(s-a)(s-b)(s-c)},$$

where the semiperimeter of the triangle is

$$s = \frac{1}{2}(a + b + c)$$

Example 3

Find the area of a triangle which has sides of lengths 4, 13, and 15. (See Figure 8.19.)

Solution:

If we designate the sides as a = 4, b = 13, and c = 15, the semiperimeter of the triangle is given by

$$s = \frac{1}{2}(4 + 13 + 15)$$

= $\frac{1}{2}(32)$
= 16

Figure 8.19

Example 3 – Solution

Therefore,

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$

$$=\sqrt{16(16-4)(16-13)(16-15)}$$

$$=\sqrt{16(12)(3)(1)}$$

$$=\sqrt{576}$$

$$= 24 \text{ units}^2$$

cont'd

When the lengths of the sides of a quadrilateral are known, we can apply Heron's Formula to find the area if the length of a diagonal is also known. Theorem 8.2.2 (Brahmagupta's Formula)

For a cyclic quadrilateral with sides of lengths *a*, *b*, *c*, and *d*, the area is given by

$$\mathbf{A} = \sqrt{(s-a)(s-b)(s-c)(s-d)},$$

where

 $s = \frac{1}{2}(a + b + c + d)$

AREA OF A TRAPEZOID

We know that the two parallel sides of a trapezoid are its bases.

The *altitude* is any line segment that is drawn perpendicular from one base to the other.

In Figure 8.21, $\overline{AB} \parallel \overline{DC}$ so and \overline{AB} and \overline{DC} are bases and \overline{AE} is an altitude for the trapezoid.

Figure 8.21

We use the more common formula for the area of a triangle (namely, $A = \frac{1}{2}bh$) to develop our remaining theorems.

Theorem 8.2.3

The area A of a trapezoid whose bases have lengths b_1 and b_2 and whose altitude has length h is given by

$$A = \frac{1}{2} h(b_1 + b_2)$$

Example 5

Given that $\overline{RS} \parallel \overline{VT}$, find the area of the trapezoid in Figure 8.23. Note that RS = 5, TV = 13, and RW = 6.

Now,

$$A = \frac{1}{2} h(b_1 + b_2)$$

RS II VT

S

Example 5 – Solution

becomes

$$A = \frac{1}{2} \cdot 6(5 + 13)$$

$$A = \frac{1}{2} \cdot 6 \cdot 18$$

 $= 54 \text{ units}^2$

cont'd

QUADRILATERALS WITH PERPENDICULAR DIAGONALS

Quadrilaterals with Perpendicular Diagonals

Theorem 8.2.4

The area of any quadrilateral with perpendicular diagonals of lengths d_1 and d_2 is given by

$$A = \frac{1}{2} d_1 d_2$$

AREA OF A RHOMBUS

We know that a rhombus is a parallelogram with two congruent adjacent sides. Among the properties of the rhombus, we proved "The diagonals of a rhombus are perpendicular."

Thus, we have the following corollary of Theorem 8.2.4. See Figure 8.25.

Figure 8.25

Area of a Rhombus

Corollary 8.2.5

The area A of a rhombus whose diagonals have lengths d_1 and d_2 is given by

$$A = \frac{1}{2}d_1d_2$$

Example 6 illustrates Corollary 8.2.5.

Example 6

Find the area of the rhombus MNPQ in Figure 8.26 if MP = 12 and NQ = 16.

Solution:

Applying Corollary 8.2.5,

$$A_{MNPQ} = \frac{1}{2} d_1 d_2$$

$$=\frac{1}{2} \cdot 12 \cdot 16$$

Figure 8.26

 $= 96 \text{ units}^2$

In problems involving the rhombus, we often utilize the fact that its diagonals are perpendicular bisectors of each other.

If the length of a side and the length of either diagonal are known, the length of the other diagonal can be found by applying the Pythagorean Theorem.

AREA OF A KITE

Area of a Kite

For a kite, one diagonal is the perpendicular bisector of the other. (See Figure 8.27.)

Corollary 8.2.6

The area A of a kite whose diagonals have lengths d_1 and d_2 is given by

$$A = \frac{1}{2}d_1d_2$$

Example 7

Find the length of \overline{RT} in Figure 8.28 if the area of the kite RSTV is 360 in² and SV = 30 in.

Solution:

 $A = \frac{1}{2}d_1d_2$ becomes $360 = \frac{1}{2}(30)d$, in which *d* is the length of the remaining diagonal \overline{RT} .

Then 360 = 15d, which means that d = 24.

Then RT = 24 in.

AREAS OF SIMILAR POLYGONS

Areas of Similar Polygons

The following theorem compares the areas of similar triangles. In Figure 8.29, we refer to the areas of the similar triangles as A_1 and A_2 .

Figure 8.29

Areas of Similar Polygons

The triangle with area A_1 has sides of lengths a_1 , b_1 , and c_1 , and the triangle with area A_2 has sides of lengths a_2 , b_2 , and c_2 .

Where a_1 corresponds to a_2 , b_1 to b_2 , and c_1 to c_2 , Theorem 8.2.7 implies that

$$\frac{A_1}{A_2} = \left(\frac{a_1}{a_2}\right)^2 \quad \text{or} \quad \frac{A_1}{A_2} = \left(\frac{b_1}{b_2}\right)^2 \quad \text{or} \quad \frac{A_1}{A_2} = \left(\frac{c_1}{c_2}\right)^2$$

Areas of Similar Polygons

Theorem 8.2.7

The ratio of the areas of two similar triangles equals the square of the ratio of the lengths of any two corresponding sides; that is,

$$\frac{A_1}{A_2} = \left(\frac{a_1}{a_2}\right)^2$$

Example 8

Use the ratio $\frac{A_1}{A_2}$ to compare the areas of

- a) two similar triangles in which the sides of the first triangle are $\frac{1}{2}$ as long as the sides of the second triangle.
- b) two squares in which each side of the first square is3 times as long as each side of the second square.

Example 8(a) – Solution

$$\mathbf{S}_1 = \frac{1}{2} \, \mathbf{S}_2,$$

so $\frac{s_1}{s_2} = \frac{1}{2}$. (See Figure 8.30.) Now $\frac{A_1}{A_2} = \left(\frac{s_1}{s_2}\right)^2$, so that $\frac{A_1}{A_2} = \left(\frac{1}{2}\right)^2$ or $\frac{A_1}{A_2} = \frac{1}{4}$.

That is, the area of the first triangle is $\frac{1}{4}$ the area of the second triangle.

Example 8(b) – Solution

$$s_1 = 3s_2$$
, so $\frac{s_1}{s_2} = 3$. (See Figure 8.31.)

$$\frac{A_1}{A_2} = \left(\frac{s_1}{s_2}\right)^2$$
, so that $\frac{A_1}{A_2} = (3)^2$ or $\frac{A_1}{A_2} = 9$.

cont'd