

Chapter 2 Parallel Lines

Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved.

Postulate 11

If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.

Theorem 2.1.2

If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.

Theorem 2.1.3

If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are congruent.

Theorem 2.1.4

If two parallel lines are cut by a transversal, then the pairs of interior angles on the same side of the transversal are supplementary.

Theorem 2.1.5

If two parallel lines are cut by a transversal, then the pairs of exterior angles on the same side of the transversal are supplementary.

Theorem 2.3.1

If two lines are cut by a transversal so that two corresponding angles are congruent, then these lines are parallel.

Given:

l and *m* cut by transversal *t*

 $\angle 1 \cong \angle 2$ (See Figure 2.16)

Prove:

 $l \parallel m$

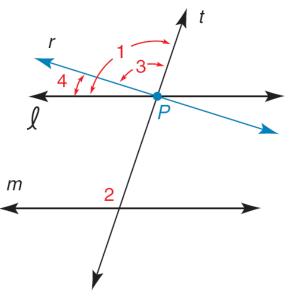


Figure 2.16

Theorem 2.3.2

If two lines are cut by a transversal so that two alternate interior angles are congruent, then these lines are parallel.

Given: Lines *t* and *m* and transversal *t*

 $\angle 2 \cong \angle 3$ (See Figure 2.17)

Prove:

l || *m*

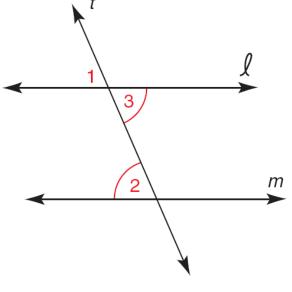


Figure 2.17

Theorem 2.3.3

If two lines are cut by a transversal so that two alternate exterior angles are congruent, then these lines are parallel.

In a more complex drawing, it may be difficult to decide which lines are parallel because of congruent angles.

Consider Figure 2.18.

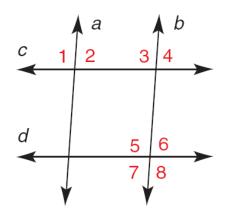


Figure 2.18

Suppose that $\angle 1 \cong \angle 3$.

Which lines must be parallel?

The resulting confusion (it appears that *a* may be parallel to *b* and *c* may be parallel to *d*) can be overcome by asking, "Which lines help form $\angle 1$ and $\angle 3$?" In this case, $\angle 1$ and $\angle 3$ are formed by lines *a* and *b* with *c* as the transversal.

Thus, *a* || *b*.

Example 1

In Figure 2.18, which lines must be parallel if $\angle 3 \cong \angle 8$?

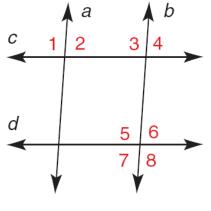


Figure 2.18

Solution:

 \angle 3 and \angle 8 are the alternate exterior angles formed when lines *c* and *d* are cut by transversal *b*.

Thus, *c* || *d*.

Theorem 2.3.4

If two lines are cut by a transversal so that two interior angles on the same side of the transversal are supplementary, then these lines are parallel.

Theorem 2.3.5

If two lines are cut by a transversal so that two exterior angles on the same side of the transversal are supplementary, then the lines are parallel.

Theorem 2.3.6

If two lines are each parallel to a third line, then these lines are parallel to each other.

Theorem 2.3.7

If two coplanar lines are each perpendicular to a third line, then these lines are parallel to each other.

Construction 7

To construct the line parallel to a given line from a point not on that line.

Given: \overrightarrow{AB} and point *P* not on \overrightarrow{AB} , as in Figure 2.23(a)

• P

Construct: The line through point *P* parallel to \overrightarrow{AB}

Construction: Figure 2.23(b): Draw a line (to become a transversal) through point *P* and some point on \overleftrightarrow{AB} .

For convenience, we choose point *A* and draw \overrightarrow{AP} .

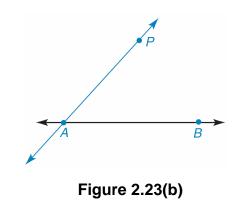


Figure 2.23(c): Using *P* as the vertex, construct the angle that corresponds to $\angle PAB$ so that this angle is congruent to $\angle PAB$.

It may be necessary to extend \overrightarrow{AP} upward to accomplish this. \overrightarrow{PX} is the desired line parallel to \overrightarrow{AB} .

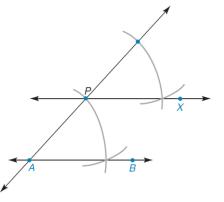


Figure 2.23(c)