

Chapter

Analytic Geometry

Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved.

When we use algebra along with the rectangular coordinate system to prove a geometric theorem, the method of proof is **analytic.**

The analytic (algebraic) approach relies heavily on the placement of the figure in the coordinate system and on the application of the formulas in Table 10.1.

TABLE 10.1 Formulas of Analytic Geometry	
Distance	$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Midpoint	$M = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$
Slope	$m = \frac{y_2 - y_1}{x_2 - x_1}$ where $x_1 \neq x_2$
Special relationships	$\ell_1 \parallel \ell_2 \leftrightarrow m_1 = m_2$
for lines	$\ell_1 \perp \ell_2 \leftrightarrow m_1 \cdot m_2 = -1$, where neither ℓ_1 nor ℓ_2 is
	a vertical line or a horizontal line.

We review this information in Table 10.2.

In Table 10.2, you will find that the figure determined by any positive numerical choices of *a*, *b*, and *c* matches the type of triangle described.

When midpoints are involved, we use coordinates such as 2*a* or 2*b*.

Example 1

Prove the following theorem by the analytic method (see Figure 10.29).

Theorem 10.4.1

The line segment determined by the midpoints of two sides of a triangle is parallel to the third side.

Example 1

Plan: Use the Slope Formula; if $m_{\overline{MN}} = m_{\overline{AC}}$, then $\overline{MN} \parallel \overline{AC}$.

Proof: As shown in Figure 10.29, $\triangle ABC$ has vertices at A(0, 0), B(2a, 0), and C(2b, 2c). With *M* the midpoint of \overline{BC} , and *N* the midpoint of \overline{AB} ,

$$M = \left(\frac{2a+2b}{2}, \frac{0+2c}{2}\right), = (a+b, c)$$
$$N = \left(\frac{0+2a}{2}, \frac{0+0}{2}\right), = (a, 0)$$

Example 1

Next we apply the Slope Formula to determine $m_{\overline{MN}}$ and $m_{\overline{AC}}$.

Now
$$m_{\overline{MN}} = \frac{c-0}{(a+b)-a} = \frac{c}{b};$$

also,
$$m_{\overline{AC}} = \frac{2c - 0}{2b - 0} = \frac{2c}{2b} = \frac{c}{b}$$
.

Because $m_{\overline{MN}} = m_{\overline{AC}}$,

we see that $\overline{MN} \parallel \overline{AC}$.

cont'd

In Table 10.3, we review convenient placements for types of quadrilaterals.

Theorem 10.4.2

The diagonals of a parallelogram bisect each other.

Theorem 10.4.3

The diagonals of a rhombus are perpendicular.

Theorem 10.4.4

If the diagonals of a parallelogram are equal in length, then the parallelogram is a rectangle.