

Line and Angle Relationships

Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved.

Angles and Their Relationships

Definition

An **angle** is the union of two rays that share a common endpoint.

In Figure 1.46, in which \overrightarrow{BA} and \overrightarrow{BC} have the common endpoint *B*. As shown, this angle is represented by $\angle ABC$ or $\angle CBA$.

Figure 1.46

The rays *BA* and *BC* are known as the **sides** of the angle. *B*, the common endpoint of these rays, is known as the **vertex** of the angle. When three letters are used to name an angle, the vertex is always named in the middle.

Angles and Their Relationships

Recall that a single letter or numeral may be used to name the angle. The angle in Figure 1.46 may be described as $\angle B$ (the vertex of the angle) or as $\angle 1$.

In set notation, we see that $\angle B = \overrightarrow{BA} \cup \overrightarrow{BC}$

Postulate 8 (Protractor Postulate)

The measure of an angle is a unique positive number.

TYPES OF ANGLES

An angle whose measure is less than 90° is an **acute angle**.

If the angle's measure is exactly 90°, the angle is a **right angle**.

If the angle's measure is between 90° and 180°, the angle is **obtuse.**

An angle whose measure is exactly 180° is a **straight angle;** alternatively, a straight angle is one whose sides form opposite rays (a straight line).

A **reflex angle** is one whose measure is between 180° and 360°. See Table 1.4

In Figure 1.47, $\angle ABC$ contains the noncollinear points *A*, *B*, and *C*. Unless otherwise stated or indicated (by an arc), $\angle ABC$ is an acute angle.

The three points A, B, and C also determine a plane.

The plane containing $\angle ABC$ is separated into three subsets by the angle:

Points such as *D* are said to be in the *interior* of $\angle ABC$.

Points such as *E* are said to be $on \angle ABC$.

Points such as *F* are said to be in the *exterior* of $\angle ABC$.

With this description, it is possible to state the Angle-Addition Postulate, which is the counterpart of the Segment-Addition Postulate! Consider Figure 1.48 as you read Postulate 9.

Figure 1.48

Postulate 9 (Angle-Addition Postulate) If a point *D* lies in the interior of an angle *ABC*, then $m \angle ABD + m \angle DBC = m \angle ABC$.

Example 1

Use Figure 1.48 to find m $\angle ABC$ if: **a)** m $\angle ABD = 27^{\circ}$ and m $\angle DBC = 42^{\circ}$ **b)** m $\angle ABD = x^{\circ}$ and m $\angle DBC = (2x - 3)^{\circ}$

Solution: **a)** Using the Angle-Addition Postulate, $m \angle ABC = m \angle ABD + m \angle DBC$.

That is, $m \angle ABC = 27^\circ + 42^\circ = 69^\circ$.

b) $m \angle ABC = m \angle ABD + m \angle DBC$ = $x^{\circ} + (2x - 3)^{\circ}$ = $(3x - 3)^{\circ}$

CLASSIFYING PAIRS OF ANGLES

Many angle relationships involve exactly two angles (a pair)—never more than two angles and never less than two angles!

In Figure 1.48, $\angle ABD$ and $\angle DBC$ are said to be *adjacent* angles.

Figure 1.48

In this description, the term *adjacent* means that angles lie "next to" each other; in everyday life, one might say that the Subway sandwich shop is adjacent to the Baskin-Robbins ice cream shop.

When two angles are adjacent, they have a common vertex and a common side between them.

In Figure 1.48, $\angle ABC$ and $\angle ABD$ are not adjacent because they have interior points in common.

Definition

Two angles are **adjacent** (adj. \angle s) if they have a common vertex and a common side between them.

Definition

Congruent angles ($\cong \angle s$) are two angles with the same measure.

Congruent angles must coincide when one is placed over the other. (Do not consider that the sides appear to have different lengths; remember that rays are infinite in length!)

In symbols, $\angle 1 \cong \angle 2$ if m $\angle 1 = m \angle 2$. In Figure 1.49, similar markings (arcs) indicate that two angles are congruent; thus, $\angle 1 \cong \angle 2$.

Figure 1.49

Example 2

Given:
$$\angle 1 \cong \angle 2$$

 $m \angle 1 = 2x + 15$
 $m \angle 2 = 3x - 2$
Find: x

Solution:

$$\angle 1 \cong \angle 2$$
 means m $\angle 1 = m \angle 2$.

Therefore,

$$2x + 15 = 3x - 2$$

 $17 = x$ or $x = 17$

Note: $m \angle 1 = 2(17) + 15 = 49^{\circ}$ and $m \angle 2 = 3(17) - 2 = 49^{\circ}$.

Definition

The **bisector** of an angle is the ray that separates the given angle into two congruent angles.

With *P* in the interior of $\angle MNQ$ so that $\angle MNP \cong \angle PNQ$, \overrightarrow{NP} is said to **bisect** $\angle MNQ$.

Equivalently, \overrightarrow{NP} is the bisector or angle-bisector of $\angle MNQ$.

On the basis of Figure 1.50, possible consequences of the definition of bisector of an angle are

 $m \angle MNP = m \angle PNQ$ $m \angle MNQ = 2(m \angle PNQ)$ $m \angle MNQ = 2(m \angle MNP)$ $m \angle PNQ = \frac{1}{2}(m \angle MNQ)$ $m \angle MNP = \frac{1}{2}(m \angle MNQ)$

Definition

Two angles are **complementary** if the sum of their measures is 90°. Each angle in the pair is known as the **complement** of the other angle.

Angles with measures of 37° and 53° are complementary. The 37° angle is the complement of the 53° angle, and vice versa.

If the measures of two angles are x and y and it is known that $x + y = 90^{\circ}$, then these two angles are complementary.

Definition

Two angles are **supplementary** if the sum of their measures is 180°. Each angle in the pair is known as the **supplement** of the other angle.

Example 3

Given that $m \angle 1 = 29^{\circ}$, find:

a) the complement x of $\angle 1$ **b)** the supplement y of $\angle 1$

Solution: **a)** x + 29 = 90, so $x = 61^{\circ}$; complement = 61°

b) *y* + 29 = 180,

so $y = 151^\circ$; supplement = 151°

When two straight lines intersect, the pairs of nonadjacent angles in opposite positions are known as **vertical angles**.

In Figure 1.51, $\angle 5$ and $\angle 6$ are vertical angles (as are $\angle 7$ and $\angle 8$).

Figure 1.51

In addition, $\angle 5$ and $\angle 7$ can be described as adjacent and supplementary angles, as can $\angle 5$ and $\angle 8$.

If $m \angle 7 = 30^\circ$, what is $m \angle 5$ and what is $m \angle 8$? It is true in general that vertical angles are congruent.

Recall the Addition and Subtraction Properties of Equality: If a = b and c = d, then $a \pm c = b \pm d$.

These principles can be used in solving a system of equations, such as the following:

$$x + y = 5$$

$$2x - y = 7$$

$$3x = 12$$
 (left and right sides are added)

$$x = 4$$

We can substitute 4 for x in either equation to solve for y:

x + y = 5 4 + y = 5 (by substitution) y = 1

If x = 4 and y = 1, then x + y = 5 and 2x - y = 7.

When each term in an equation is multiplied by the same nonzero number, the solutions of the equation are not changed.

For instance, the equations 2x - 3 = 7 and 6x - 9 = 21(each term multiplied by 3) both have the solution x = 5.

Likewise, the values of x and y that make the equation 4x + y = 180 true also make the equation 16x + 4y = 720(each term multiplied by 4) true.

CONSTRUCTIONS WITH ANGLES

Construction 3

To construct an angle congruent to a given angle.

Given: $\angle RST$ in Figure 1.52(a)

Figure 1.52(a)

Construct: With \overrightarrow{PQ} as one side, $\angle NPQ \cong \angle RST$

Construction: Figure 1.52(b): With a compass, mark an arc to intersect both sides of $\angle RST$ at points G and H.

Figure 1.52(b)

Figure 1.52(c): Without changing the radius, mark an arc to intersect \overrightarrow{PQ} at *K* and the "would-be" second side of $\angle NPQ$.

Figure 1.52(b): Now mark an arc to measure the distance from *G* to *H*.

Figure 1.52(b)

Figure 1.52(d): Using the same radius, mark an arc with *K* as center to intersect the would-be second side of the desired angle. Now draw the ray from *P* through the point of intersection of the two arcs.

Figure 1.52(d)

Just as a line segment can be bisected, so can an angle. This takes us to a fourth construction method.

Construction 4

To construct the angle bisector of a given angle.

Given: $\angle PRT$ in Figure 1.53(a)

Construct: \overrightarrow{RS} so that $\angle PRS \cong \angle SRT$

Construction:

Figure 1.53(b): Using a compass, mark an arc to intersect the sides of $\angle PRT$ at points *M* and *N*.

Figure 1.53(b)

Figure 1.53(c): Now, with *M* and *N* as centers, mark off two arcs with equal radii to intersect at point *S* in the interior of $\angle PRT$, as shown.

Now draw ray RS, the desired angle bisector.

Reasoning from the definition of an angle bisector, the Angle-Addition Postulate, and the Protractor Postulate, we can justify the following theorem.

Theorem 1.4.1

There is one and only one bisector for a given angle.

This theorem is often stated, "The bisector of an angle is unique."