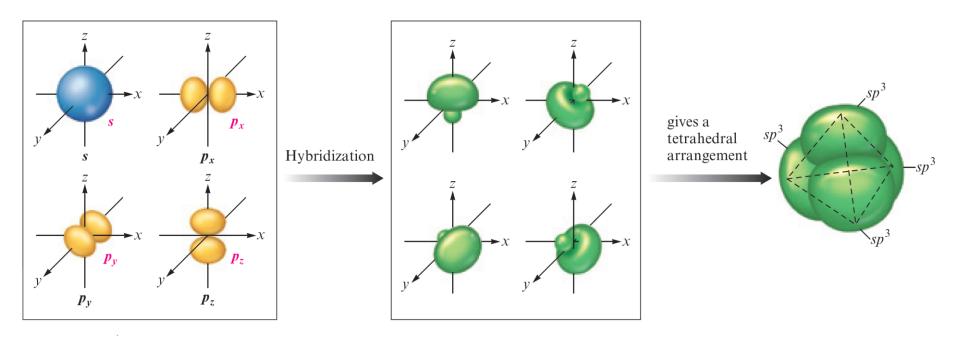


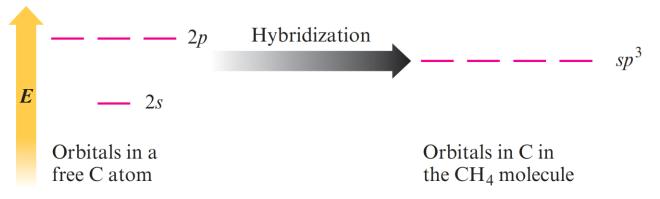
Chapter 9 *Table of Contents*


- (9.1) Hybridization and the localized electron model
- (9.2) The molecular orbital model
- (9.3) Bonding in homonuclear diatomic molecules
- (9.4) Bonding in heteronuclear diatomic molecules
- (9.5) Combining the localized electron and molecular orbital models
- (9.6) Photoelectron spectroscopy

Hybridization

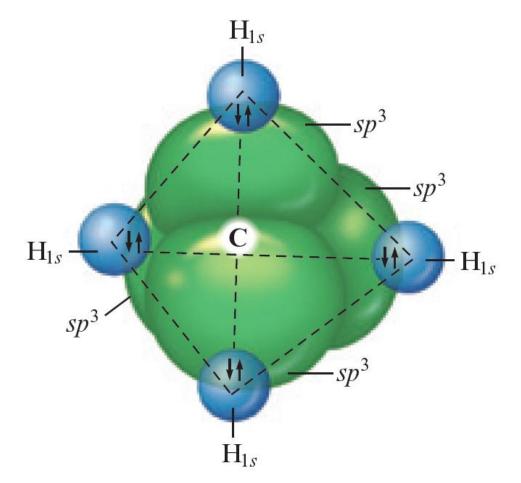
- The mixing of native orbitals to form special orbitals for bonding
- sp³ orbitals Formed from one 2s and three 2p orbitals
 - Atoms that undergo this process are said to be sp³
 hybridized

Section 9.1


Figure 9.3 - *sp*³ Hybridization of a Carbon Atom

Orbital Energy-Level Diagram

- Gives importance to the total number of electrons and the arrangement of these electrons in the molecule
 - Example Hybridization of the carbon 2s and 2p orbitals in methane



Key Principle in *sp*³ Hybridization

- Whenever an atom requires a set of equivalent tetrahedral atomic orbitals, this model assumes that the atom adopts a set of sp³ orbitals
 - The atom undergoes sp³ hybridization

Figure 9.6 - Tetrahedral Set of Four *sp*³ Orbitals

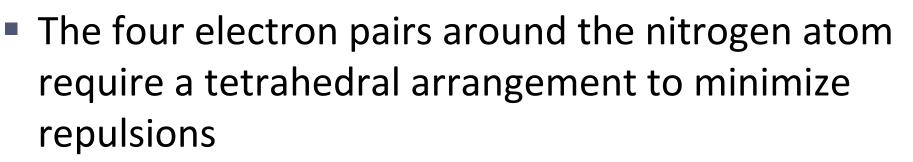
Copyright ©2017 Cengage Learning. All Rights Reserved.

Critical Thinking

- What if the sp³ hybrid orbitals were higher in energy than the p orbitals in the free atom?
 - How would this affect our model of bonding?

Example 9.1 - The Localized Electron Model I

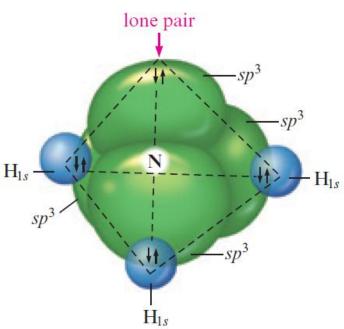
 Describe the bonding in the ammonia molecule using the localized electron model


Example 9.1 - Solution

- A complete description of the bonding involves three steps
 - Writing the Lewis structure
 - Determining the arrangement of electron pairs using the VSEPR model
 - Determining the hybrid atomic orbitals needed to describe the bonding in the molecule

Example 9.1 - Solution (Continued 1)

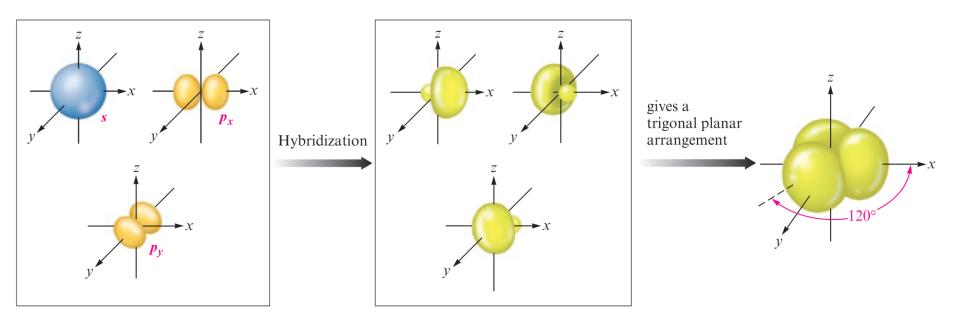
Lewis structure for NH₃


Section 9.1

 $H - \ddot{N} - H$

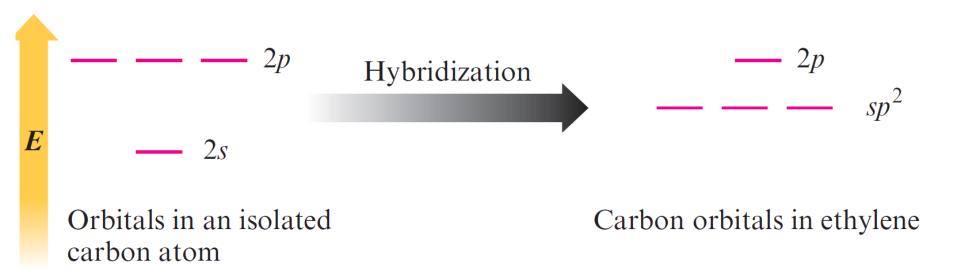
A tetrahedral set of sp³ hybrid orbitals is obtained by combining the 2s and three 2p orbitals Example 9.1 - Solution (Continued 2)

In the NH₃ molecule, three of the sp³ orbitals are used to form bonds to the three hydrogen atoms, and the fourth sp³ orbital holds the lone lone pair pair



*sp*² Hybridization

- Combination of one 2s and two 2p orbitals
- Gives a trigonal planar arrangement of atomic orbitals
 - Bond angles 120 degrees
- One 2p orbital is not used
 - Oriented perpendicular to the plane of the sp² orbitals


Figure 9.8 - Formation of *sp*² Orbitals

Section 9.1

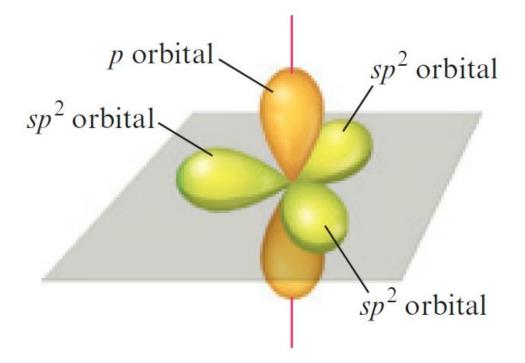
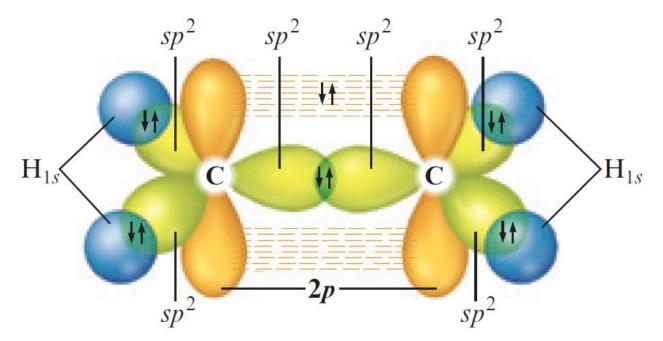

Section 9.1

Figure 9.9 - Orbital Energy-Level Diagram for the Formation of *sp*² Orbitals in Ethylene

Figure 9.10 - *sp*² Hybridization

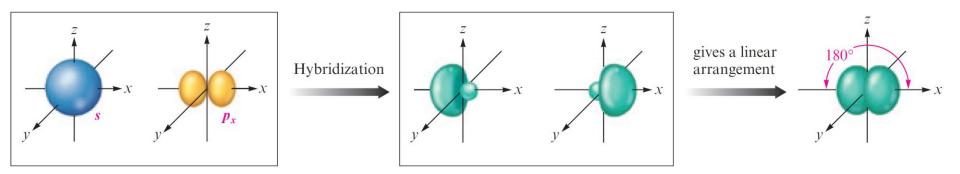
Section 9.1


Types of *sp*² Hybridized Bonds

- Sigma (o) bond: Formed by electron sharing in an area centered on a line running between the atoms
- Pi (π) bond: Parallel p orbitals share an electron pair occupying the space above and below the σ bond
- A double bond always consists of one σ bond and one π bond

Key Principle in *sp*² Hybridization

 If an atom is surrounded by three effective pairs, a set of sp² hybrid orbitals is required


Copyright ©2017 Cengage Learning. All Rights Reserved.

sp Hybridization

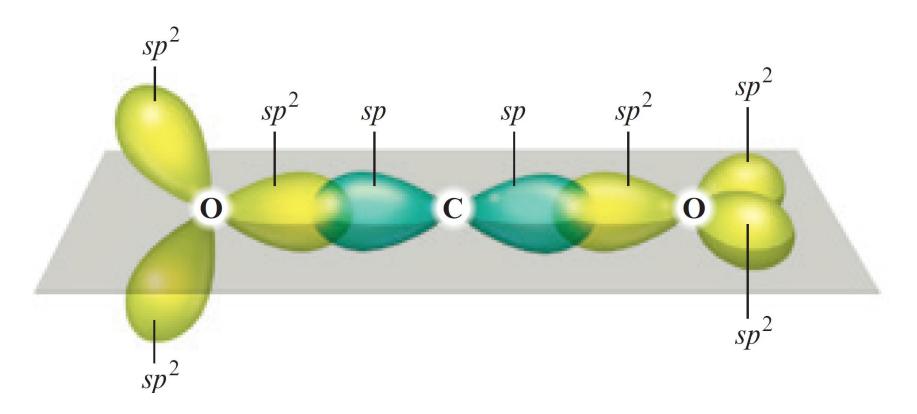
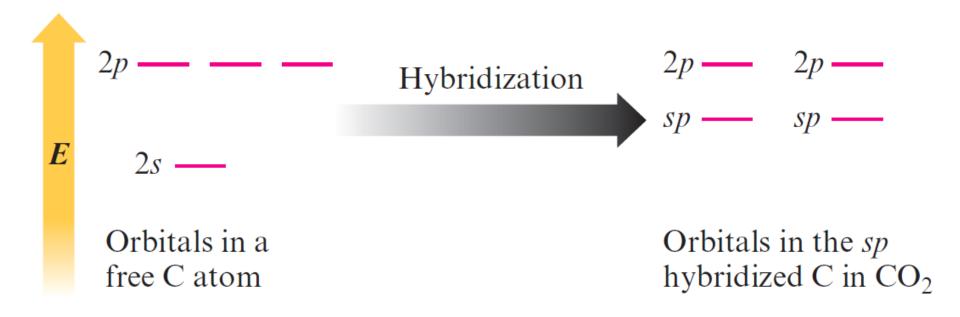
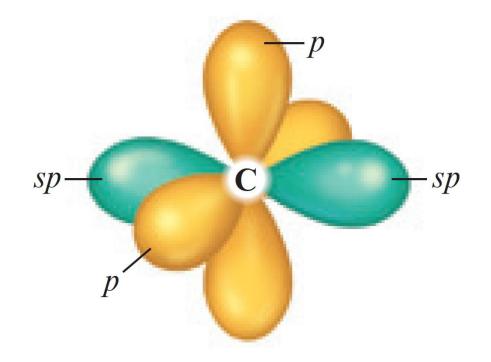

- Involves one s and one p orbital
- Two effective pairs around an atom will always requires sp hybridization
- Example Carbon atoms in carbon dioxide
 - Two 2p orbitals are unaffected
 - Used in formation of *π* bonds with oxygen atoms

Figure 9.14 - Formation of *sp* Orbitals


Section 9.1


Figure 9.15 - Hybrid Orbitals in the CO₂ Molecule

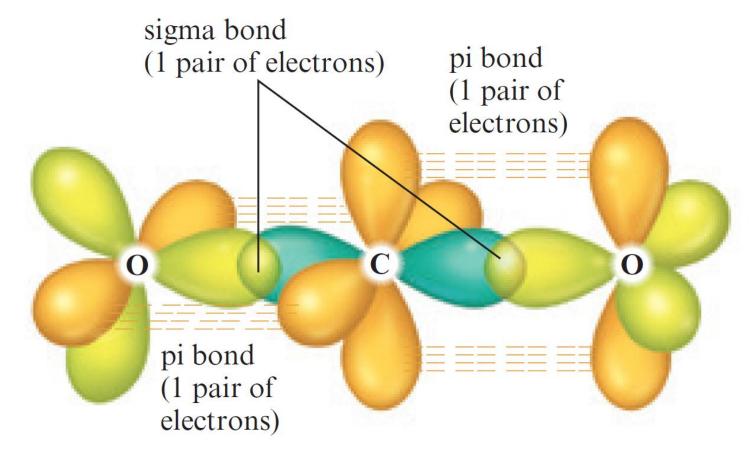

Figure 9.16 - Orbital Energy-Level Diagram for the Formation of *sp* Hybrid Orbitals on Carbon

Figure 9.17 - An *sp* Hybridized Carbon Atom

Figure 9.19 (a) - Orbitals Forming Bonds in Carbon Dioxide

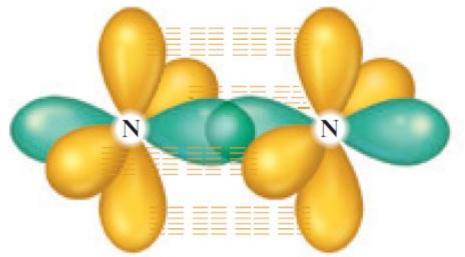
Example 9.2 - The Localized Electron Model II

Describe the bonding in the N₂ molecule

ectron Model

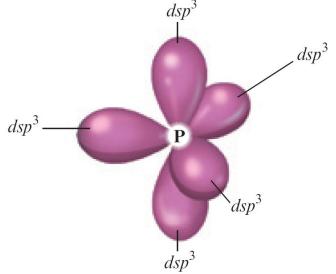
Example 9.2 - Solution

- The Lewis structure for N_2 is $: N \equiv N :$
- Each nitrogen atom is surrounded by two effective pairs
 - Gives a linear arrangement requiring a pair of oppositely directed orbitals
 - Requires sp hybridization

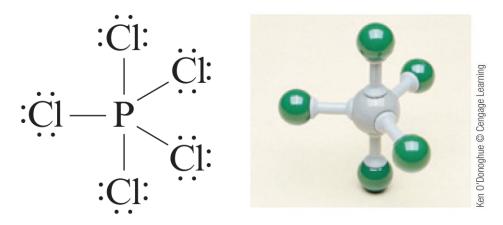


Example 9.2 - Solution (Continued 1)

- Each nitrogen atom has two sp hybrid orbitals and two unchanged p orbitals
 - sp orbitals form the σ bond between the nitrogen atoms and hold lone pairs
 - *p* orbitals form the two π bonds
- Each pair of overlapping parallel p orbitals holds one electron pair
 - Accounts for electron arrangement given in the Lewis structure


Example 9.2 - Solution (Continued 2)

- The triple bond consists of a σ bond and two π bonds
- A lone pair occupies an *sp* orbital on each nitrogen atom


*dsp*³ Hybridization

- Combination of one d, one s, and three p orbitals
- A set of five effective pairs around a given atom always requires a trigonal bipyramidal arrangement
 - Requires *dsp*³ hybridization of that atom

*dsp*³ Hybridization (Continued)

- Each chlorine atom in PCl₅ is surrounded by four electron pairs
 - Requires a tetrahedral arrangement
 - Each chlorine atom requires four sp³ orbitals

Copyright ©2017 Cengage Learning. All Rights Reserved.

Example 9.3 - The Localized Electron Model III

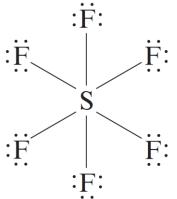
Describe the bonding in the triiodide ion (I₃⁻)

Example 9.3 - Solution

The Lewis structure for I₃⁻

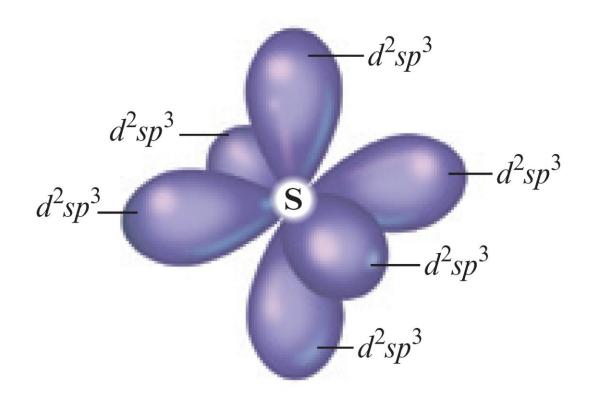
The central iodine atom has five pairs of electrons

- Requires a trigonal bipyramidal arrangement, which in turn requires a set of *dsp*³ orbitals
- Outer iodine atoms have four pairs of electrons
 - Requires tetrahedral arrangement and sp³ hybridization



Example 9.3 - Solution (Continued)

- The central iodine atom is *dsp*³ hybridized
 - Three hybrid orbitals hold lone pairs
 - Two hybrid orbitals overlap with sp^3 orbitals of the other two iodine atoms to form σ bonds


*d*²*sp*³ Hybridization

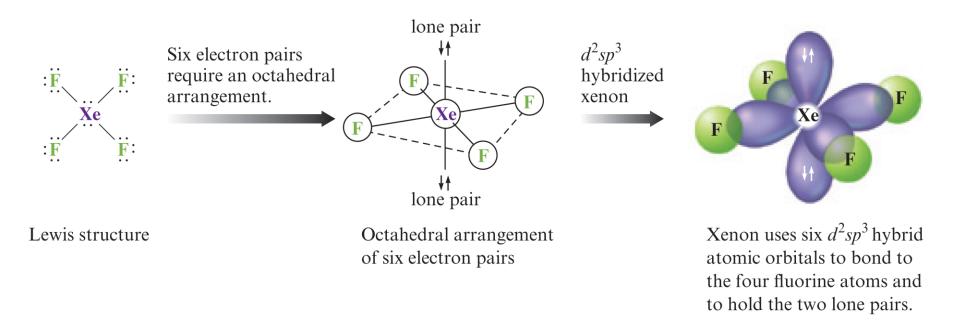
- Combination of two d, one s, and three p orbitals
- Requires an octahedral arrangement of six equivalent hybrid orbitals
- Six electron pairs around an atom are always arranged octahedrally
 iii
 - Require d²sp³ hybridization of the atom

Section 9.1

Figure 9.23 - An Octahedral Set of *d*²*sp*³ Orbitals on a Sulfur Atom

Interactive Example 9.4 - The Localized Electron Model IV

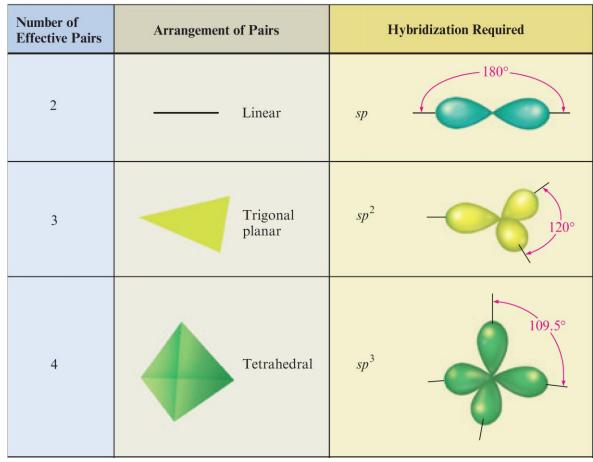
How is the xenon atom in XeF₄ hybridized?


Interactive Example 9.4 - Solution

- XeF₄ has six pairs of electrons around xenon that are arranged octahedrally to minimize repulsions
 - An octahedral set of six atomic orbitals is required to hold these electrons, and the xenon atom is d²sp³ hybridized

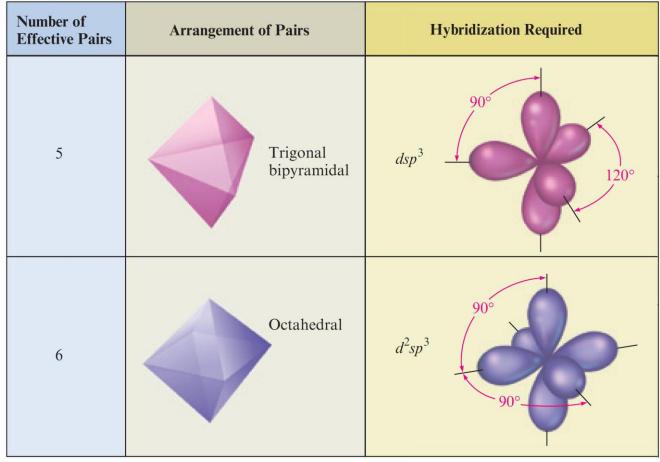
Hybridization and the Localized Electron Model


Section 9.1


Interactive Example 9.4 - Solution (Continued)

Problem Solving Strategy - Using the Localized Electron Model

- Draw the Lewis structure(s)
- Determine the arrangement of electron pairs using the VSEPR model
- Specify the hybrid orbitals required to accommodate the electron pairs



Copyright ©2017 Cengage Learning. All Rights Reserved.

Hybridization and the Localized Electron Model

Section 9.1

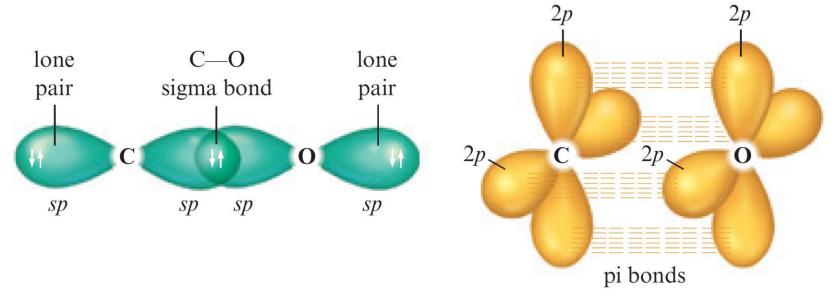
Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 9.5 - The Localized Electron Model V

- For each of the following molecules or ions, predict the hybridization of each atom, and describe the molecular structure
 - a. CO
 - b. BF₄⁻
 - c. XeF₂

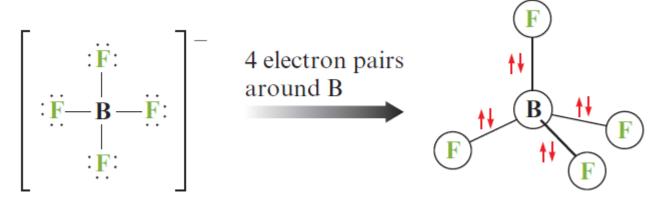
Interactive Example 9.5 - Solution (a)

- The CO molecule has 10 valence electrons
 - Each atom has two effective pairs, which means that both are *sp* hybridized


 $: C \equiv O :$

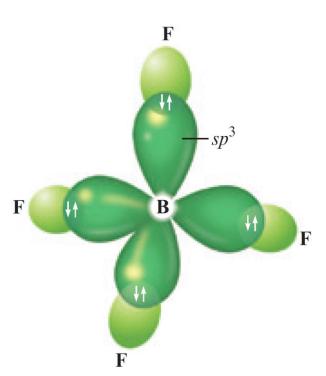
- The triple bond consists of:
 - One σ bond produced by overlap of an *sp* orbital from each atom
 - Two π bonds produced by overlap of 2p orbitals from each atom

Interactive Example 9.5 - Solution (a) (Continued)


- The lone pairs are in sp orbitals
- The molecule exhibits a linear arrangement of atoms

Interactive Example 9.5 - Solution (b)

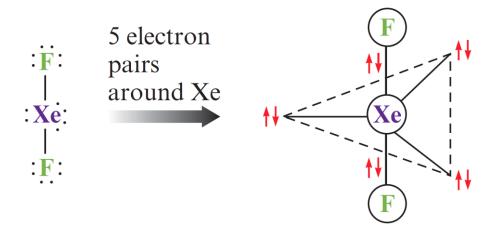
- BF₄⁻ion has 32 valence electrons
 - The boron atom is surrounded by four pairs of electrons
 - Requires tetrahedral arrangement and sp³ hybridization of the boron atom


Copyright ©2017 Cengage Learning. All Rights Reserved.

Hybridization and the Localized Electron Model

Section 9.1

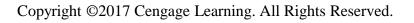
Interactive Example 9.5 - Solution (b) (Continued)


- Each fluorine atom has four electron pairs
 - Assumed to be sp³ hybridized
- Molecular structure Tetrahedral

Interactive Example 9.5 - Solution (c)

- XeF₂ has 22 valence electrons
 - The xenon atom is surrounded by five electron pairs
 - Requires a trigonal bipyramidal arrangement

Section 9.1



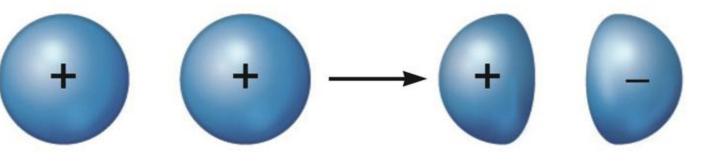
 dsn^3

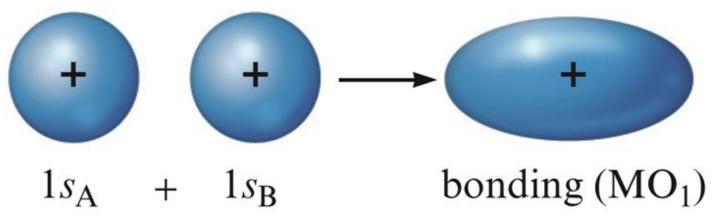
Xe

Interactive Example 9.5 - Solution (c) (Continued)

- The lone pairs are placed in the plane where they are 120 degrees apart
- To accommodate five pairs at the vertices of a trigonal bipyramid requires that the xenon atom adopt a set of five *dsp*³ orbitals
- Each fluorine atom has four electron is assumed to be sp³ hybridized
- The molecule has a linear arrangement of atoms

Limitations of the Localized Electron Model


- Incorrectly assumes that electrons are localized
 - Concept of resonance must be added
- Does not deal effectively with molecules containing unpaired electrons
- Does not provide direct information about bond energies


Molecular Orbitals (MOs)

- Have the same characteristics as atomic orbitals
 - Can hold two electrons with opposite spins
 - The square of the molecular orbital wave function indicates electron probability

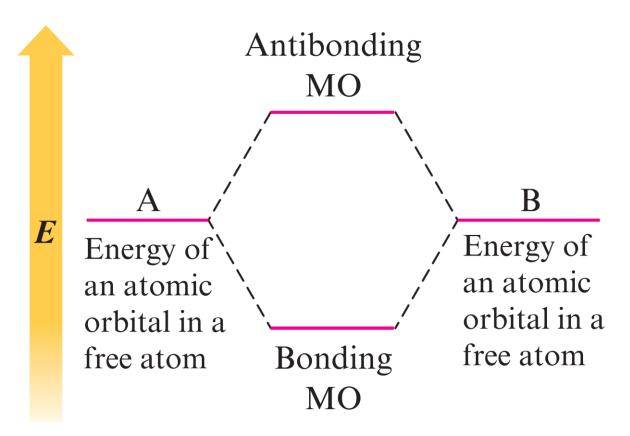
Figure 9.25 - Formation of Molecular Orbitals

 $1s_{A} - 1s_{B}$ antibonding (MO₂)

Copyright ©2017 Cengage Learning. All Rights Reserved.

Properties of Molecular Orbitals

- The electron probability of both molecular orbitals is centered along the line passing through the two nuclei
 - MO₁ and MO₂ are referred to as sigma (σ) molecular orbitals
- In the molecule, only the molecular orbitals are available for occupation by electrons



Properties of Molecular Orbitals (Continued 1)

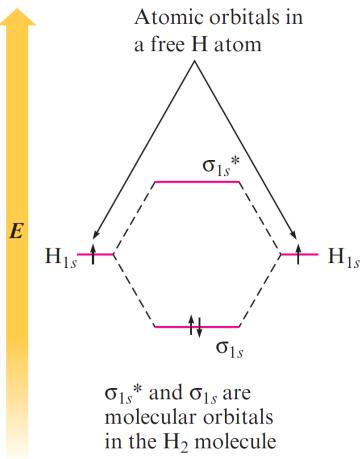
- Bonding and antibonding
 - Bonding molecular orbital: Lower in energy than the atomic orbitals from which it is composed
 - Electrons in this orbital will favor bonding
 - Antibonding molecular orbital: Higher in energy than the atomic orbitals from which it is composed
 - Electrons in this orbital will favor the separated atoms

Figure 9.27 - Bonding and Antibonding Molecular Orbitals

Copyright ©2017 Cengage Learning. All Rights Reserved.

Properties of Molecular Orbitals (Continued 2)

- The MO model is physically reasonable
 - There is high probability of finding electrons between nuclei in bonding MOs
 - Electrons are outside the space between the nuclei in antibonding MOs
- Labels on molecular orbitals indicate their shape, the parent atomic orbitals, and whether they are bonding or antibonding
 - Antibonding character is indicated by an asterisk



Properties of Molecular Orbitals (Continued 3)

- Molecular electronic configuration can be written in the same way as atomic configurations
- Each molecular orbital can hold two electrons
 - The spins should be opposite
- Molecular orbitals are conserved
 - The number of MOs will be equal to the number of atomic orbitals used to construct them

Figure 9.28 - Molecular Energy-Level Diagram for the H₂ Molecule

Bond Order

Used to indicate bond strength

Bond order = $\frac{\text{number of bonding electrons} - \text{number of antibonding electrons}}{2}$

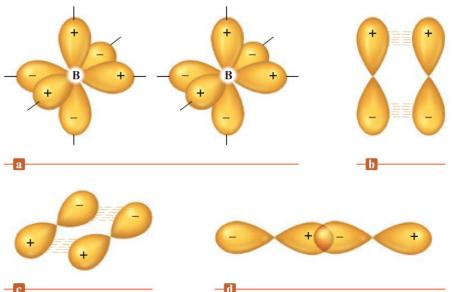
- Bonds are perceived in terms of pairs of electrons
- Larger the bond, greater the bond strength

Bond Order (Continued)

- Consider the H₂⁻ ion
 - Contains two bonding electrons and one antibonding electron

Bond order =
$$\frac{2-1}{2} = \frac{1}{2}$$

 $E H_{1s} + H_{1s}$


Homonuclear Diatomic Molecules

- Composed of two identical atoms
- Only the valence orbitals of the atoms contribute significantly to the molecular orbitals of a particular molecule

Section 9.3 Bonding in Homonuclear Diatomic Molecules

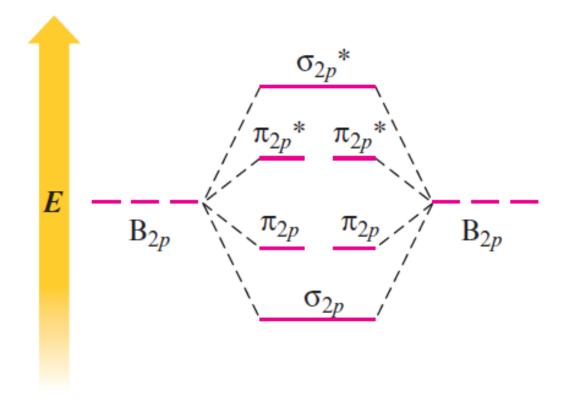
Homonuclear Diatomic Molecules - Boron

- Electron configuration 1s²2s²2p¹
 - B₂ molecule is described based on how *p* atomic orbitals combine to form molecular orbitals
 - *p* orbitals occur in sets of three mutually perpendicular orbitals
 - Two pairs of *p* orbitals can overlap in a parallel fashion and one pair can overlap head-on

Homonuclear Diatomic Molecules - Boron (Continued 1)

- Consider the molecular orbitals from the head-on overlap
 - Bonding orbital is formed by reversing the sign of the right orbital
 - Produces constructive interference
 - There is enhanced electron probability between the nuclei
 - Antibonding orbital is formed by the direct combination of the orbitals
 - Produces destructive inference
 - There is decreased electron probability between the nuclei

Homonuclear Diatomic Molecules - Boron (Continued 2)


- MOs are σ molecular orbitals
- Combination of parallel p orbitals with matched positive and negative phases results in constructive interference
 - Gives a bonding π orbital
- If the signs of one orbital are reversed, an antibonding π orbital is formed

Homonuclear Diatomic Molecules - Boron (Continued 3)

- Both p orbitals are pi (π) molecular orbitals
 - Pi (*π*) molecular orbitals: Electron probability lies above and below the line between the nuclei
 - π_{2p} Bonding MO
 - π_{2p}^* Antibonding MO

Section 9.3 Bonding in Homonuclear Diatomic Molecules

Figure 9.34 - The Expected MO Energy-Level Diagram Resulting from the Combination of the 2*p* Orbitals on Two Boron Atoms

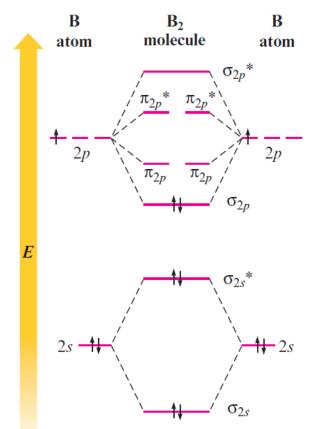
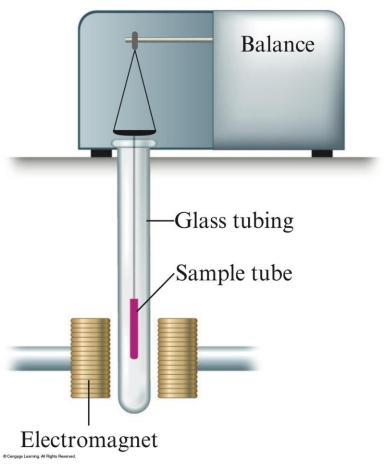

Bonding in Homonuclear Diatomic Molecules

Figure 9.35 - The Expected Molecular Orbital Energy-Level Diagram for the B₂ Molecule

Bond order
$$=$$
 $\frac{4-2}{2} = 1$

Section 9.3

B₂ should be a stable molecule



Types of Magnetism in the Presence of a Magnetic Field

- Paramagnetism: Substance is attracted into the inducing magnetic field
 - Associated with unpaired electrons
- Diamagnetism: Substance is repelled from the inducing magnetic field
 - Associated with paired electrons
- Substance that has both paired and unpaired electrons will exhibit a net paramagnetism

Section 9.3 Bonding in Homonuclear Diatomic Molecules

Figure 9.36 - Measuring Paramagnetism

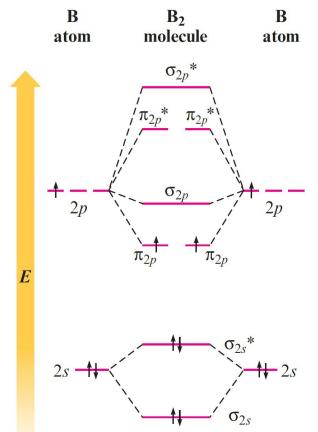

Bonding in Homonuclear Diatomic Molecules

Figure 9.37 - The Correct Molecular Orbital Energy-Level Diagram for B₂

 Diagram explains the observed paramagnetism of B₂

Section 9.3

- When *p*-s mixing is allowed, the energies of the σ_{2p} and π_{2p} orbitals are reversed
 - Two electrons from the B 2p orbitals now occupy separate, degenerate π_{2p} molecular orbitals and have parallel spins

Critical Thinking

- What if π_{2p} orbitals were lower in energy than σ_{2p} orbitals?
 - What would you expect the B₂ molecular orbital energy-level diagram to look like (without considering *p*-*s* mixing)?
 - Compare the expected diagram to figures 9.34 and 9.35, and state the differences from each

Section 9.3 Bonding in Homonuclear Diatomic Molecules

Figure 9.38 - Molecular Orbital Summary of Second Row Diatomic Molecules

	B ₂	C ₂	N ₂	O ₂	F ₂
E	σ _{2p} *			σ _{2p} *	
	π_{2p}^* —			π_{2p}^*	
	σ_{2p} —			π_{2p} $+$	
	π_{2p} $\stackrel{\bullet}{\longrightarrow}$ $\stackrel{\bullet}{\longrightarrow}$	-++++		σ_{2p}	
	σ_{2s}^*			σ_{2s}^*	
	σ_{2s}	<u>t</u>		σ_{2s}	
Magnetism	Paramagnetic	Diamagnetic	Diamagnetic	Paramagnetic	Diamagnetic
Bond order	1	2	3	2	1
Observed bond dissociation energy (kJ/mol)	290	620	942	495	154
Observed bond length (pm)	159	131	110	121	143

Key Points regarding Period 2 Diatomics

- There are definite correlations between bond order, bond energy, and bond length
- Bond order cannot be associated with a particular bond energy
- The large bond energy associated with the N₂ molecule will have a triple bond
- The O₂ molecule is paramagnetic

Interactive Example 9.7 - The Molecular Orbital Model II

- Use the molecular orbital model to predict the bond order and magnetism of each of the following molecules
 - a. Ne₂

b. P₂

Section 9.3 Bonding in Homonuclear Diatomic Molecules

Interactive Example 9.7 - Solution (a)

- The valence orbitals for Ne are 2s and 2p
 - The Ne₂ molecule has 16 valence electrons (8 from each atom)

Section 9.3 Bonding in Homonuclear Diatomic Molecules

Interactive Example 9.7 - Solution (a) (Continued)

 Placing these electrons in the appropriate molecular orbitals produces the following diagram

$$E \begin{array}{cccc} \sigma_{2p}^{*} & \stackrel{}{\longrightarrow} \\ \pi_{2p}^{*} & \stackrel{}{\longrightarrow} \\ \pi_{2p}^{*} & \stackrel{}{\longrightarrow} \\ \pi_{2p}^{*} & \stackrel{}{\longrightarrow} \\ \sigma_{2p}^{*} & \stackrel{}{\longrightarrow} \\ \sigma_{2s}^{*} & \stackrel{}{\longrightarrow} \\ \sigma_{2s}^{*} & \stackrel{}{\longrightarrow} \\ \end{array}$$

- The bond order is (8 8)/2 = 0
 - Ne₂ does not exist

Interactive Example 9.7 - Solution (b)

- P₂ contains phosphorus atoms from the third row of the periodic table
 - Assume that the diatomic molecules of the Period 3 elements can be treated in a way similar to that which has been used so far
 - Draw the MO diagram for P₂ analogous to that for N₂
 - The only change will be that the molecular orbitals will be formed from 3s and 3p atomic orbitals

Bonding in Homonuclear Diatomic Molecules

The P₂ molecule has 10 valence electrons (5 from each phosphorus atom)

$$E \begin{array}{ccc} & \sigma_{3p}^{*} & & - \\ & \pi_{3p}^{*} & & - \\ & \sigma_{3p}^{*} & & - \\ & \sigma_{3p}^{*} & & \uparrow \downarrow \\ & \pi_{3p}^{*} & & \uparrow \downarrow \\ & \sigma_{3s}^{*} & & \uparrow \downarrow \\ & \sigma_{3s}^{*} & & \uparrow \downarrow \end{array}$$

Bond order = 3

Section 9.3

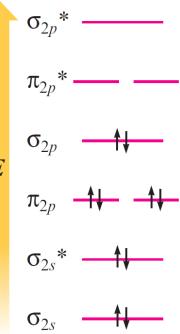
The molecule is expected to be diamagnetic

Heteronuclear Diatomic Molecules

- Heteronuclear: Different atoms
- A special case involves molecules containing atoms adjacent to each other in the periodic table
 - MO diagram can be used for homonuclear molecules as atoms involved in such molecules are similar

Bonding in Heteronuclear Diatomic Molecules

Section 9.4

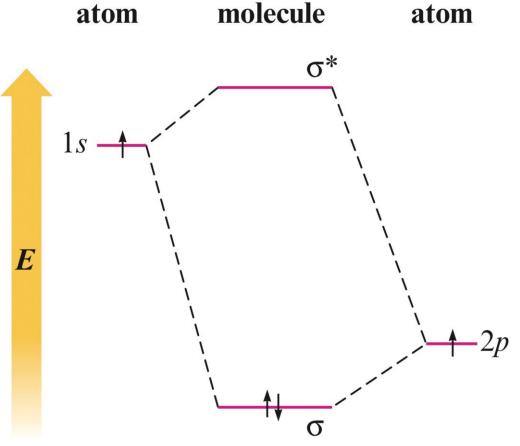

Interactive Example 9.8 - The Molecular Orbital Model

 Use the molecular orbital model to predict the magnetism and bond order of the NO⁺ and CN⁻ ions Section 9.4 Bonding in Heteronuclear Diatomic Molecules

Interactive Example 9.8 - Solution

- The NO⁺ ion has 10 valance electrons (5 + 6 1)
- The CN⁻ ion also has 10 valance electrons (4 + 5 + 1)
- Both ions are diamagnetic

Bond order =
$$\frac{8-2}{2} = 3$$


Energy-Level Diagrams for Diatomic Molecules

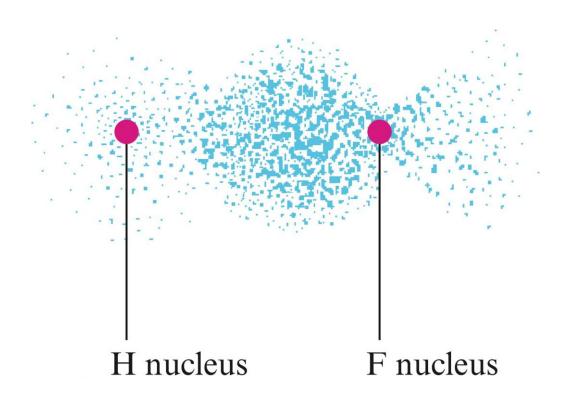
- When the two atoms of a diatomic molecule are very different, the energy-level diagram for homonuclear molecules cannot be used
- Consider the hydrogen fluoride (HF) molecule
 - Electron configuration of hydrogen 1s¹
 - Electron configuration of fluorine 1s²2s²2p⁵
 - Assume that fluorine uses only one of its 2p orbitals to bond to hydrogen

Bonding in Heteronuclear Diatomic Molecules

Section 9.4

Figure 9.42 - Partial Molecular Orbital Energy-LevelDiagram for HFHHF

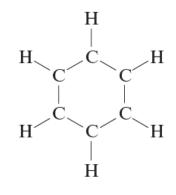
Copyright ©2017 Cengage Learning. All Rights Reserved.

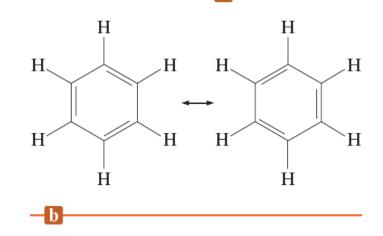

Energy-Level Diagrams for Diatomic Molecules (Continued)

- The HF molecule should be stable as both electrons are lowered in energy relative to their energy in the free hydrogen and fluorine atoms
- Electrons prefer to be closer to the fluorine atom
 - The electron pair is not shared equally
- Fluorine has a slight excess of negative charge, and hydrogen is partially positive

Section 9.4 Bonding in Heteronuclear Diatomic Molecules

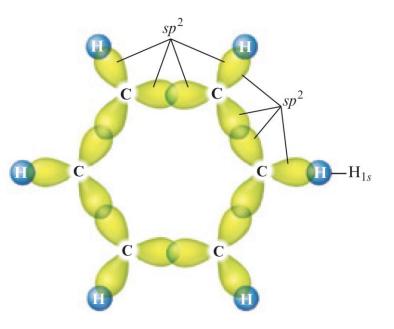
Figure 9.43 - Electron Probability Distribution in the Bonding Molecular Orbital of the HF Molecule


Combining the Localized Electron and MO Models


- The *σ* bonds in a molecule can be described as being localized
- The π bonds must be treated as being delocalized
- For molecules that require resonance:
 - The localized electron model can be used to describe the σ bonding
 - The MO model can be used to describe the π bonding

General Model - Benzene Molecule and its Resonance Structures

- All atoms in benzene are in the same plane
 - All the C—C bonds are known to be equivalent
- To account for the six equivalent C—C bonds, the localized electron model must invoke resonance

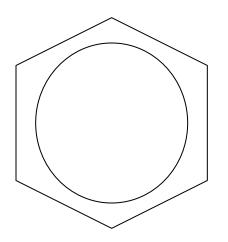


Combination of Models - Identifying σ bonds

- Assumption The σ bonds of carbon involve sp² orbitals
 - The bonds are centered in the plane of the molecule

H

H


Combination of Models - Identifying π bonds

- Each carbon atom is sp² hybridized
 - A p orbital perpendicular to the plane of the ring remains on each carbon atom
 - Used to form π molecular orbitals
- The electrons in the resulting π molecular orbitals are delocalized above and below the plane of the ring

Copyright ©2017 Cengage Learning. All Rights Reserved.

Benzene Structure

Indicates the delocalized π bonding in the molecule

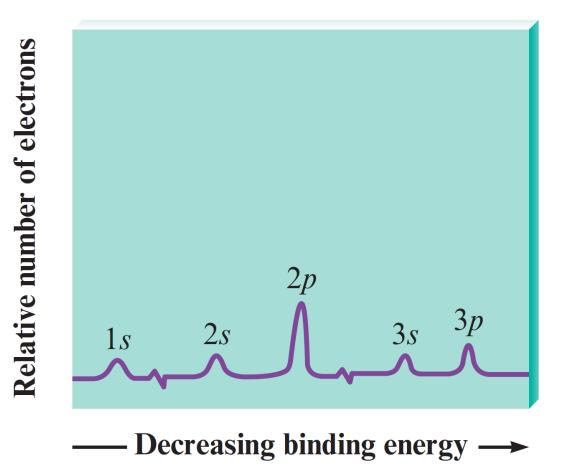
Section 9.6 Photoelectron Spectroscopy (PES)

Electron Spectroscopy

- Uses
 - Determines the relative energies of electrons in individual atoms and molecules
 - Characterizes and tests molecular bonding theories
 - Helps in the study of the electron energy levels of atoms
- Involves bombarding the sample with high-energy photons
 - Kinetic energies of the ejected electrons are measured

Section 9.6 Photoelectron Spectroscopy (PES)

Electron Spectroscopy (Continued)


Formula used to determine energy of the electron

$$E_{electron} = hv - KE$$

- E Energy of electron
- *hv* Energy of photons used
- KE Kinetic energy of the electron

Section 9.6 Photoelectron Spectroscopy (PES)

Figure 9.50 - The Idealized PES Spectrum of Phosphorus

