Chapter 21

Transition Metals and Coordination Chemistry
Chapter 21

Table of Contents

- (21.1) The transition metals: A survey
- (21.2) The first-row transition metals
- (21.3) Coordination compounds
- (21.4) Isomerism
- (21.5) Bonding in complex ions: The localized electron model
- (21.6) The crystal field model
- (21.7) The biological importance of coordination complexes
- (21.8) Metallurgy and iron and steel production
Transition Metals - Properties

- Show great similarities within a given period and a given vertical group
 - Attributed to the fact that inner electrons are the last electrons added
 - d-block transition metals receive d electrons
 - Lanthanides and actinides receive f electrons
 - Inner electrons cannot participate easily in bonding
Figure 21.1 - Transition Elements on the Periodic Table

d-block transition elements

<table>
<thead>
<tr>
<th>Sc</th>
<th>Ti</th>
<th>V</th>
<th>Cr</th>
<th>Mn</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
<td>Cd</td>
</tr>
<tr>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
<td>Pt</td>
<td>Au</td>
<td>Hg</td>
</tr>
<tr>
<td>Ac</td>
<td>Rf</td>
<td>Db</td>
<td>Sg</td>
<td>Bh</td>
<td>Hs</td>
<td>Mt</td>
<td>Ds</td>
<td>Rg</td>
<td>Cn</td>
</tr>
</tbody>
</table>

f-block transition elements

* **Lanthanides**

| Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |

| Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
Transition Metals - Properties (Continued 1)

- Behave like typical metals
 - Possess metallic luster and high electrical and thermal conductivities
- Display variations in physical properties
 - Melting points
 - Tungsten - 3400°C
 - Mercury - 25°C
- Iron and titanium are hard and strong, whereas copper and gold are relatively soft
Transition Metals - Properties (Continued 2)

- Display variations in chemical reactivity
 - Example - Some transition metals react readily to form oxides
 - The oxides of chromium, nickel, and cobalt adhere to the metallic surface and protect the metal from further oxidation
 - The oxide of iron scales off, exposing new metal to corrosion
Forming Ionic Compounds - Trends

- More than one oxidation state is often found
- Cations are often complex ions
 - **Complex ions**: Species where the transition metal ion is surrounded by a certain number of ligands
 - Ligands - Molecules or ions that behave as Lewis bases
 - Example
 - \([\text{Co(NH}_3\text{)}_6]\text{Cl}_3\) contains \(\text{Co(NH}_3\text{)}_6^{3+}\) cations and \(\text{Cl}^-\) anions
A Complex Ion - $\text{Co(NH}_3\text{)}_6^{3+}$
Forming Ionic Compounds - Trends (Continued)

- Compounds are colored
 - Transition metal ion in the complex ion can absorb visible light of specific wavelengths
- Compounds are paramagnetic
 - Contain unpaired electrons
First-Row Transition Metals - Electron Configurations

- $3d$ orbitals begin to fill after the $4s$ orbital is complete

- Exceptions
 - Chromium (Cr) - [Ar]$4s^13d^5$
 - Copper - [Ar]$4s^13d^{10}$

- A set of orbitals with the same energy is said to be degenerate
First-row transition metal ions do not have 4s electrons

- Energy of the 3d orbitals is significantly less than that of the 4s orbital

Example

- Configuration of neutral titanium - [Ar]4s²3d²
- Configuration of Ti³⁺ - [Ar]3d¹
Oxidation States

- Transition metals can form a variety of ions by losing one or more electrons

- Note
 - For the first five elements, the maximum possible oxidation state is related to the loss of all the 4s and 3d electrons
Ionization Energy

- Increases gradually from left to right across the period
 - Third ionization energy increases faster than the first ionization energy
 - Proves that there is significant decline in the energy of the 3d orbitals while going across the period
Section 21.1

The Transition Metals: A Survey

Figure 21.2 - Plots of the First and Third Ionization Energies for the First-Row Transition Metals
Standard Reduction Potentials

- Half-reaction of a metal that acts as a reducing agent
 \[M \rightarrow M^{n+} + ne^- \]
 - This is the reverse of the conventional half-reactions
- The metal with most positive potential is the best reducing agent
Section 21.1
The Transition Metals: A Survey

Table 21.3 - Relative Reducing Abilities of the First-Row Transition Metals in Aqueous Solution

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Potential (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc → Sc^{3+} + 3e^-</td>
<td>2.08</td>
</tr>
<tr>
<td>Ti → Ti^{2+} + 2e^-</td>
<td>1.63</td>
</tr>
<tr>
<td>V → V^{2+} + 2e^-</td>
<td>1.2</td>
</tr>
<tr>
<td>Mn → Mn^{2+} + 2e^-</td>
<td>1.18</td>
</tr>
<tr>
<td>Cr → Cr^{2+} + 2e^-</td>
<td>0.91</td>
</tr>
<tr>
<td>Zn → Zn^{2+} + 2e^-</td>
<td>0.76</td>
</tr>
<tr>
<td>Fe → Fe^{2+} + 2e^-</td>
<td>0.44</td>
</tr>
<tr>
<td>Co → Co^{2+} + 2e^-</td>
<td>0.28</td>
</tr>
<tr>
<td>Ni → Ni^{2+} + 2e^-</td>
<td>0.23</td>
</tr>
<tr>
<td>Cu → Cu^{2+} + 2e^-</td>
<td>-0.34</td>
</tr>
</tbody>
</table>
Standard Reduction Potentials (Continued)

\[2H^+ + 2e^- \rightarrow H_2 \]

- For this reaction, \(E^\circ = 0 \)
 - All metals except Cu can reduce \(H^+ \) ions to \(H_2 (g) \) in 1 \(M \) aqueous solution of strong acid

\[M(s) + 2H^+ (aq) \rightarrow H_2 (g) + M^{2+} (aq) \]

- The reducing abilities of the first-row transition metals decrease going from left to right across the period
 - Exceptions - Chromium and zinc
Section 21.1

The Transition Metals: A Survey

Figure 21.3 - Atomic Radii of the 3\textit{d}, 4\textit{d}, and 5\textit{d} Transition Series
4d and 5d Transition Series - Trends

- 4d and 5d metals are similar in size
- **Lanthanide contraction**: The decrease in the atomic radii of the lanthanide series elements, going from left to right in the periodic table
 - Caused by increase in nuclear charge
 - Offsets the normal increase in size due to going from one principal quantum level to another
Differences in size between 4d and 5d transition elements in a group increase gradually from left to right.

Useful properties of 4d and 5d metals:
- Zirconium and zirconium oxide are highly resistant to high temperatures.
 - Used along with niobium and molybdenum alloys in space vehicle parts.
Tantalum displays high resistance to the attack of body fluids
 - Used for replacement of bones

Platinum group metals
 - Used as catalysts for industrial processes
Scandium

- Rare element
- Exists in compounds in the +3 oxidation state
- Chemistry strongly resembles that of the lanthanides
 - Most of its compounds are colorless and diamagnetic
- Scandium metal is prepared by electrolysis of molten ScCl$_3$
Titanium

- Low density and high strength
 - Used in jet engines and to make pipes, pumps, and reaction vessels in the chemical industry

- Titanium(IV) oxide, TiO$_2$
 - Highly opaque substance
 - Used as white pigment in paper, paint, and plastics
 - Main ores - Rutile and ilmenite

- Exists in compounds in the +4 oxidation state
Titanium (Continued)

- Titanium(III) compounds
 - Produced by reduction of the +4 state
 - Exists as the purple Ti(H₂O)₆³⁺ ion in aqueous solution
 - Slowly oxidized to titanium(IV) by air

- Titanium(II)
 - Not stable in aqueous solution
 - Exists in solid state in compounds such as TiO and the dihalides of general formula TiX₂
Vanadium

- Used in alloys with titanium and iron
- Hard and corrosion resistant
- Vanadium(V) oxide (V_2O_5)
 - Useful industrial catalyst for the production of sulfuric acid
- Pure form can be extracted from the electrolytic reduction of fused salts
- Principal oxidation state: +5
Table 21.4 - Oxidation States and Species for Vanadium in Aqueous Solution

<table>
<thead>
<tr>
<th>Oxidation State of Vanadium</th>
<th>Species in Aqueous Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5</td>
<td>VO_2^+ (yellow)</td>
</tr>
<tr>
<td>+4</td>
<td>VO^2+ (blue)</td>
</tr>
<tr>
<td>+3</td>
<td>$\text{V}^{3+}(aq)$ (blue-green)</td>
</tr>
<tr>
<td>+2</td>
<td>$\text{V}^{2+}(aq)$ (violet)</td>
</tr>
</tbody>
</table>
Chromium

- Rare element and an important industrial material
- Chief ore - Chromite (FeCr$_2$O$_4$)
 - Reduced by carbon to produce ferrochrome, which can be added to iron for making steel

$$\text{FeCr}_2\text{O}_4(s) + 4\text{C}(s) \rightarrow \text{Fe}(s) + 2\text{Cr}(s) + 4\text{CO}(g)$$

Ferrochrome
Chromium (Continued 1)

- Chromium metal
 - Hard and brittle
 - Maintains a bright surface by creating a tough invisible oxide coating
- Forms compounds in which Cr has the oxidation state +2, +3, or +6
- Chromous ion (Cr$^{2+}$) is a powerful reducing agent in aqueous solution
Chromium (VI) species are excellent oxidizing agents in acidic solution

- Reduction of dichromate ion (Cr$_2$O$_7^{2-}$) to the Cr$^{3+}$ ion
 - Oxidizing ability of dichromate ion is pH-dependent
 - Exists as the chromate ion in a basic solution
 - Less powerful as an oxidizing agent

$$\text{Cr}_2\text{O}_7^{2-} (aq) + 14\text{H}^+ (aq) + 6e^- \rightarrow 2\text{Cr}^{3+} (aq) + 7\text{H}_2\text{O}(l) \quad E^\circ = 1.33 \text{ V}$$

$$\text{Cr}_2\text{O}_4^{2-} (aq) + 4\text{H}_2\text{O}(l) + 3e^- \rightarrow \text{Cr(OH)}_3 (s) + 5\text{OH}^- (aq) \quad E^\circ = -0.13 \text{ V}$$
Chromium (Continued 3)

- Red chromium(VI) oxide dissolves in H₂O
 - Product is a strongly acidic, red-orange solution
 \[2\text{CrO}_3(s) + \text{H}_2\text{O}(l) \rightarrow 2\text{H}^+(aq) + \text{Cr}_2\text{O}_7^{2-}(aq) \]
 - When made basic, the solution turns yellow
 - Chromate salts can be obtained
- Cleaning solution - Mixture of chromium(VI) oxide and concentrated H₂SO₄
 - Powerful oxidizing medium that can remove organic materials from analytical glassware
Figure 21.4 - Structures of the Chromium(VI) Anions

- $\text{Cr}_2\text{O}_7^{2-}$ exists in acidic solution
- CrO_4^{2-} exists in basic solution
Manganese

- Used for producing hard steel, which is used for rock crushers, bank vaults, and armor plates
- Source - Manganese nodules
 - Found on the ocean floor in the form of spherical rocks
 - Rocks contain mixtures of manganese, iron oxides, and small traces of cobalt, nickel, and copper
- Exists in all oxidation states from +2 to +7
Table 21.6 - Some Compounds of Manganese in its most Common Oxidation States

<table>
<thead>
<tr>
<th>Oxidation State of Manganese</th>
<th>Examples of Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2</td>
<td>Mn(OH)$_2$ (pink)</td>
</tr>
<tr>
<td></td>
<td>MnS (salmon)</td>
</tr>
<tr>
<td></td>
<td>MnSO$_4$ (reddish)</td>
</tr>
<tr>
<td></td>
<td>MnCl$_2$ (pink)</td>
</tr>
<tr>
<td>+4</td>
<td>MnO$_2$ (dark brown)</td>
</tr>
<tr>
<td>+7</td>
<td>KMnO$_4$ (purple)</td>
</tr>
</tbody>
</table>
Iron

- Most abundant heavy metal
- Appears white and lustrous
- Highly reactive toward oxidizing agents
 - Example - Iron rapidly oxidizes in moist air to form rust
- Chemistry of iron involves its +2 and +3 oxidation states
Table 21.7 - Typical Compounds of Iron

<table>
<thead>
<tr>
<th>Oxidation State of Iron</th>
<th>Examples of Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2</td>
<td>FeO (black)</td>
</tr>
<tr>
<td></td>
<td>FeS (brownish black)</td>
</tr>
<tr>
<td></td>
<td>FeSO$_4$ · 7H$_2$O (green)</td>
</tr>
<tr>
<td></td>
<td>K$_4$Fe(CN)$_6$ (yellow)</td>
</tr>
<tr>
<td>+3</td>
<td>FeCl$_3$ (brownish black)</td>
</tr>
<tr>
<td></td>
<td>Fe$_2$O$_3$ (reddish brown)</td>
</tr>
<tr>
<td></td>
<td>K$_3$Fe(CN)$_6$ (red)</td>
</tr>
<tr>
<td></td>
<td>Fe(SCN)$_3$ (red)</td>
</tr>
<tr>
<td>+2, +3 (mixture)</td>
<td>Fe$_3$O$_4$ (black)</td>
</tr>
<tr>
<td></td>
<td>KFe[Fe(CN)$_6$] (deep blue, “Prussian blue”)</td>
</tr>
</tbody>
</table>
Cobalt

- Rare element
 - Ores - Smaltite (CoAs$_2$) and cobaltite (CoAsS)
- Appears bluish white
- Used in alloys such as stainless steel and stellite
- Chemistry of cobalt involves its +2 and +3 oxidation states
- Forms a wide variety of coordination compounds
Table 21.8 - Typical Compounds of Cobalt

<table>
<thead>
<tr>
<th>Oxidation State of Cobalt</th>
<th>Examples of Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2</td>
<td>CoSO$_4$ (dark blue)</td>
</tr>
<tr>
<td></td>
<td>[Co(H$_2$O)$_6$]Cl$_2$ (pink)</td>
</tr>
<tr>
<td></td>
<td>Co(H$_2$O)$_6$$_2$ (red)</td>
</tr>
<tr>
<td></td>
<td>CoS (black)</td>
</tr>
<tr>
<td></td>
<td>CoO (greenish brown)</td>
</tr>
<tr>
<td>+3</td>
<td>CoF$_3$ (brown)</td>
</tr>
<tr>
<td></td>
<td>Co$_2$O$_3$ (charcoal)</td>
</tr>
<tr>
<td></td>
<td>K$_3$[Co(CN)$_6$] (yellow)</td>
</tr>
<tr>
<td></td>
<td>[Co(NH$_3$)$_6$]Cl$_3$ (yellow)</td>
</tr>
</tbody>
</table>
Section 21.2
The First-Row Transition Metals

Nickel

- Found in ores in combination with arsenic, antimony, and sulfur
- Silvery white metal
- Has high electric and thermal conductivity
- Resistant to corrosion
 - Used for plating active metals and in the production of alloys such as steel
- Exists in compounds in the +2 oxidation state
Table 21.9 - Typical Compounds of Nickel

<table>
<thead>
<tr>
<th>Oxidation State of Nickel</th>
<th>Examples of Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>+2</td>
<td>NiCl₂ (yellow)</td>
</tr>
<tr>
<td></td>
<td>[Ni(H₂O)₆]Cl₂ (green)</td>
</tr>
<tr>
<td></td>
<td>NiO (greenish black)</td>
</tr>
<tr>
<td></td>
<td>NiS (black)</td>
</tr>
<tr>
<td></td>
<td>[Ni(H₂O)₆]SO₄ (green)</td>
</tr>
<tr>
<td></td>
<td>Ni(NH₃)₆₂ (blue)</td>
</tr>
</tbody>
</table>
Copper

- Widely abundant in natural ores that contain sulfides, arsenides, chlorides, and carbonates
- Valued for its high electrical conductivity and its resistance to corrosion
 - Used for plumbing and electrical applications
- Constituent in alloys such as brass, sterling silver, and gold (18-karat)
Copper (Continued)

- Corrodes when exposed to air
 - Produces a green patina that consists of basic copper sulfate

\[
3\text{Cu}(s) + 2\text{H}_2\text{O}(l) + \text{SO}_2(g) + 2\text{O}_2(g) \rightarrow \text{Cu}_3(\text{OH})_4\text{SO}_4(s)
\]

Basic copper sulfate

- Chemistry of copper principally involves the +2 oxidation state

- Can be toxic if consumed in large amounts
Table 21.11 - Typical Compounds of Copper

<table>
<thead>
<tr>
<th>Oxidation State of Copper</th>
<th>Examples of Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>Cu$_2$O (red)</td>
</tr>
<tr>
<td></td>
<td>Cu$_2$S (black)</td>
</tr>
<tr>
<td></td>
<td>CuCl (white)</td>
</tr>
<tr>
<td>+2</td>
<td>CuO (black)</td>
</tr>
<tr>
<td></td>
<td>CuSO$_4$ \cdot 5H$_2$O (blue)</td>
</tr>
<tr>
<td></td>
<td>CuCl$_2$ \cdot 2H$_2$O (green)</td>
</tr>
<tr>
<td></td>
<td>Cu(H$_2$O)$_6$$_2$ (blue)</td>
</tr>
</tbody>
</table>
Zinc

- Refined from sphalerite (ZnS), which occurs with galena (PbS)
- White and lustrous
- Highly active metal
 - Excellent reducing agent and has the tendency to tarnish rapidly
- Used for galvanizing steel
- Forms colorless salts in the +2 oxidation state
Coordination Compound

- Consists of a complex ion and counterions
 - Complex ion - Transition metal ion with its attached ligands
 - **Counterions**: Anions or cations that are required to produce a compound with no net charge
- Example - [Co(NH$_3$)$_5$Cl]Cl$_2$
 - Brackets indicate the complex ion composition
Proposed that transition metal ions have two types of valence

- Primary valence - Ability to form ionic bonds with oppositely charged ions
 - Currently termed as the **oxidation state**
- Secondary valence - Ability to bind to ligands (Lewis bases) and form complex ions
 - Currently termed as the **coordination number**
Coordination Number

- Number of bonds formed by metal ions to ligands in complex ions
 - Varies from two to eight based on the size, charge, and electron configuration of the transition metal ion
- Metal ions can have more than one coordination number
Table 21.12 - Typical Coordination Numbers for Some Common Metal Ions

<table>
<thead>
<tr>
<th>M</th>
<th>Coordination Numbers</th>
<th>Coordination Numbers</th>
<th>Coordination Numbers</th>
<th>Coordination Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu⁺</td>
<td>2, 4</td>
<td>Mn²⁺</td>
<td>4, 6</td>
<td>Sc³⁺</td>
</tr>
<tr>
<td>Ag⁺</td>
<td>2</td>
<td>Fe²⁺</td>
<td>6</td>
<td>Cr³⁺</td>
</tr>
<tr>
<td>Au⁺</td>
<td>2, 4</td>
<td>Co²⁺</td>
<td>4, 6</td>
<td>Co³⁺</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ni²⁺</td>
<td>4, 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu²⁺</td>
<td>4, 6</td>
<td>Au³⁺</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zn²⁺</td>
<td>4, 6</td>
<td></td>
</tr>
</tbody>
</table>
Typical Geometries of Coordination Numbers

- **Linear**
 - Produced by two ligands

- **Tetrahedral or square planar**
 - Produced by four ligands

- **Octahedral**
 - Produced by six ligands
Ligands

- Neutral molecule or ion having a lone electron pair that is used to form a bond to a metal ion
 - **Coordinate covalent bond**: Metal–ligand bond resulting from the interaction between a Lewis base (the ligand) and a Lewis acid (the metal ion)
Section 21.3
Coordination Compounds

Types of Ligands

- **Monodentate (unidentate) ligand**
 - Can form one bond to a metal ion
- **Chelating ligand (chelate)**
 - Has more than one atom with a lone pair that can bond to a metal ion

Ammonia (NH$_3$) is a unidentate ligand.
Chelating Ligands

- **Bidentate ligand**
 - Can form two bonds to a metal ion
- **Polydentate ligand**
 - Can form more than two bonds to a metal ion
- **Hexadentate ligand**
 - Can form as many as six bonds to a metal ion
 - Example - Ethylenediaminetetraacetate (EDTA)
Figure 21.7 - The Coordination of EDTA with a 2+ Metal Ion
Rules for Naming Coordination Compounds

- Ionic compound
 - Cation is named before the anion
- Complex ion
 - Ligands are named before the metal ion
- Ligands
 - An ‘o’ is added to the root name of the anion
 - For a neutral ligand, the name of the molecule is used
 - Exception - H₂O, NH₃, CO, and NO
Rules for Naming Coordination Compounds (Continued 1)

- Number of simple ligands are denoted by prefixes mono-, di-, tri-, tetra-, penta-, and hexa-
 - Prefixes bis-, tris-, tetrakis-, and so on are used for more complicated ligands or ones that already contain di-, tri-, and so on

- The oxidation state of the central metal ion is designated by a Roman numeral in parentheses
Rules for Naming Coordination Compounds (Continued 2)

- When more than one type of ligand is present, they are named alphabetically
 - Prefixes have no effect on the order
- If the complex ion has a negative charge, the suffix -ate is added to the name of the metal
Interactive Example 21.1 - Naming Coordination Compounds I

- Give the systematic name for the following coordination compound:
 - \([\text{Fe(en)}_2(\text{NO}_2)_2]_2\text{SO}_4\)
Interactive Example 21.1 - Solution

- First determine the oxidation state of the iron by looking at the other charged species
 - Four NO$_2^-$ ions and one SO$_4^{2-}$ ion
 - The ethylenediamine is neutral
 - Thus, the two iron ions must carry a total positive charge of 6 to balance the six negative charges, which means that each iron has a +3 oxidation state and is designated as iron(III)
Interactive Example 21.1 - Solution (Continued)

- Since the name ethylenediamine already contains di, we use bis- instead of di- to indicate the two en ligands
- The name for NO_2^- as a ligand is nitro, and the prefix di- indicates the presence of two NO_2^- ligands
- Since the anion is sulfate, the compound’s name is:

 $$\text{Bis(ethylenediamine)dinitroiron(III) sulfate}$$

 - **Cation**
 - **Anion**
Exercise

- Give formulas for the following:
 - a. Potassium tetrachlorocobaltate(II)
 \[\text{K}_2[\text{CoCl}_4] \]
 - b. Aquatricarbonylplatinum(II) bromide
 \[[\text{Pt(H}_2\text{O})(\text{CO})_3]\text{Br}_2 \]
 - c. Triamminechloroethylenediaminechromium(III) iodide
 \[[\text{Cr(NH}_3)_3\text{Cl(H}_2\text{NCH}_2\text{CH}_2\text{NH}_2)]\text{I}_2 \]
Concept of Isomerism

- **Isomers**: Two or more species with the same formula but different properties

Types

- **Structural isomerism**: Isomers contain the same atoms
 - Only one or more bonds differ
- **Stereoisomerism**: All bonds in the isomers are the same
 - Spatial arrangements of the atoms are different
Figure 21.8 - Some Classes of Isomers

Isomers (same formula but different properties)

- Structural isomers (different bonds)
- Stereoisomers (same bonds, different spatial arrangements)
 - Geometric (cis-trans) isomerism
 - Optical isomerism

Coordination isomerism
Linkage isomerism
Section 21.4

Isomerism

Structural Isomerism

- **Coordination isomerism**: Composition of the complex ion varies
- **Linkage isomerism**: Composition of the complex ion is the same, but the point of attachment of at least one of the ligands differs
Section 21.4

Isomerism

Stereoisomerism

- **Geometrical (cis–trans) isomerism**: Atoms or groups of atoms can assume different positions around a rigid ring or bond
 - *Cis isomer*: Molecules are next to each other
 - *Trans isomer*: Molecules are across from each other
Section 21.4
Isomerism

Figure 21.11 - *Cis* and *Trans* Isomers of the Complex Compound $[\text{Co(NH}_3\text{)}_4\text{Cl}_2]^+$
Optical isomerism: Isomers have opposite effects on plane-polarized light

- When light is emitted from a source, the oscillating electric fields of the photons in the beam are oriented randomly
- Plane-polarized light constitutes photons with electric fields that oscillate in a single plane
Section 21.4

Isomerism

Figure 21.12 - Unpolarized Light and Plane-Polarized Light
Section 21.4
Isomerism

Figure 21.13 - Rotation of the Plane of Polarized Light by an Optically Active Substance
Optical Activity

- Exhibited by molecules that have nonsuperimposable mirror images
 - Considered to be chiral
- **Enantiomers**: Isomers that are nonsuperimposable mirror images of each other
 - Rotate plane-polarized light in opposite directions
 - Hence, they are optical isomers
Figure 21.15 - The Human Hand, a Nonsuperimposable Mirror Image
Enantiomers

- **Dextrorotatory** (d)
 - Isomer that rotates the plane of light to the right

- **Levorotatory** (l)
 - Isomer that rotates the plane of light to the left

- **Racemic mixture**
 - Solution containing an equal mixture of d and l forms
 - Does not rotate the plane of the polarized light as the opposite effects cancel each other
Section 21.4

Isomerism

Geometric Isomers and Optical Isomers

- Geometric isomers are not necessarily optical isomers
 - Example - The *trans* isomer of \([\text{Co(en)}_2\text{Cl}_2]^+\) and its mirror image are identical
 - Since the isomer is superimposable on its mirror image, it does not exhibit optical isomerism and is not chiral
Example - The cis isomer of \([\text{Co(en)}_2\text{Cl}_2]^+\) and its mirror image are not superimposable

- Thus, they are a pair of optical isomers
- Isomer II has the same structure as the mirror image of isomer I
Section 21.4

Isomerism

Example 21.3 - Geometrical and Optical Isomerism

- Does the complex ion \([\text{Co(NH}_3\text{)Br(en)}_2]^2+\) exhibit geometrical isomerism?
 - Does it exhibit optical isomerism?
Example 21.3 - Solution

- The complex ion exhibits geometrical isomerism because the ethylenediamine ligands can be across from or next to each other.

\[
\begin{align*}
&\text{NH}_3 \\
\text{en} & \quad \text{Co} \quad \text{en} \\
\quad & \quad \text{Br} \quad \text{en} \\
\end{align*}
\]
The *cis* isomer of the complex ion also exhibits optical isomerism because its mirror images cannot be turned in any way to make them superimposable.

Thus, these mirror-image isomers of the *cis* complex are shown to be enantiomers that will rotate plane-polarized light in opposite directions.
Key Points

1. The VSEPR model does not help determine the structure of complex ions
 - It is safe to assume that:
 - A complex ion with a coordination number of 6 will have octahedral arrangement of ligands
 - Complexes with two ligands will be linear
 - Complex ions with a coordination number of 4 can be either tetrahedral or square planar
 - No reliable way exists to predict which will occur
2. Interaction between a metal ion and a ligand can be viewed as a Lewis acid–base reaction
 - The ligand donates a lone pair of electrons to an empty orbital of the metal ion to form a coordinate covalent bond
Section 21.5
Bonding in Complex Ions: The Localized Electron Model

Hybrid Orbitals Required for Complex Ion Formation

- Based on the number and arrangement of ligands

- Tetrahedral ligand arrangement; sp^3 hybridization
- Square planar ligand arrangement; dsp^2 hybridization
- Linear ligand arrangement; sp hybridization
The Crystal Field Model - An Introduction

- Focuses on the energies of the d orbitals
- Attempts to account for the magnetic properties and colors of complex ions

Assumptions
- Ligands can be approximated by negative point charges
- Metal–ligand bonding is entirely ionic
Figure 21.20 - Octahedral Arrangement of Point-Charge Ligands and the Orientation of the 3d Orbitals
Octahedral Complexes

- d_z^2 and $d_{x^2-y^2}$ point their lobes directly at the point-charge ligands
- d_{xz}, d_{yz}, and d_{xy} point their lobes between the point charges
- Negative point-charge ligands repel negatively charged electrons
 - Electrons will first fill the d orbitals farthest from the ligands to minimize repulsions
Figure 21.21 - The Energies of the 3d Orbitals for a Metal Ion in an Octahedral Complex
Splitting of 3d Orbital Energies (Δ)

- Explains the color and magnetism of complex ions of the first-row transition metal ions

- **Strong-field case**: Splitting produced by ligands is very large
 - Electrons pair in the lower-energy t_{2g} orbitals
 - Gives a diamagnetic complex in which all the electrons are paired
 - **Low-spin case**: Yields the minimum number of unpaired electrons
Splitting of 3d Orbital Energies (Δ) (Continued)

- **Weak-field case**: Splitting is small
 - Causes the electrons to occupy all five orbitals prior to pairing
 - The resulting complex contains four unpaired electrons and will be paramagnetic
 - **High-spin case**: Yields the maximum number of unpaired electrons
Section 21.6

The Crystal Field Model

Figure 21.22 - Possible Electron Arrangements in the Split 3d Orbitals in an Octahedral Complex of Co^{3+}
Critical Thinking

- What if you are told the number of unpaired electrons for a coordinate covalent ion and are asked to tell if the ligand produced a strong or weak field?

- Give an example of a coordinate covalent ion for which you could decide if it produced a strong or weak field and one for which you couldn’t, and explain your answers
Interactive Example 21.4 - Crystal Field Model I

- The Fe(CN)$_6^{3-}$ ion is known to have one unpaired electron
 - Does the CN$^-$ ligand produce a strong or weak field?
Interactive Example 21.4 - Solution

- The ligand is CN\(^{-}\) and the overall complex ion charge is 3\(^{-}\)
 - The metal ion must be Fe\(^{3+}\), which has a 3\(d^5\) electron configuration
 - There are two possible arrangements of the five electrons in the \(d\) orbitals split by the octahedrally arranged ligands
The strong-field case gives one unpaired electron, which agrees with the experimental observation.

The CN$^-$ ion is a strong-field ligand toward the Fe$^{3+}$ ion.
Spectrochemical Series

- Listing of ligands in order based on their ability to produce \(d \)-orbital splitting

\[
\text{CN}^- > \text{NO}_2^- > \text{en} > \text{NH}_3 > \text{H}_2\text{O} > \text{OH}^- > \text{F}^- > \text{Cl}^- > \text{Br}^- > \text{I}^-
\]

- Magnitude of \(\Delta \) for a given ligand increases as the charge on the metal ion increases

- Strong-field ligands (large \(\Delta \))
- Weak-field ligands (small \(\Delta \))
Interactive Example 21.5 - Crystal Field Model II

- Predict the number of unpaired electrons in the complex ion \(\text{Cr(CN)}_6^{4-} \)
Interactive Example 21.5 - Solution

- The net charge of 4^- means that the metal ion present must be Cr^{2+} ($-6 + 2 = -4$), which has a $3d^4$ electron configuration.
- Since CN^- is a strong-field ligand, the correct crystal field diagram for Cr(CN)_6^{4-} is
Interactive Example 21.5 - Solution (Continued)

- The complex ion will have two unpaired electrons.
- Note that the CN\(^-\) ligand produces such a large splitting that all four electrons will occupy the \(t_{2g}\) set even though two of the electrons must be paired in the same orbital.
Complex Ion Colors

- When a substance absorbs certain wavelengths of light in the visible region, its color is determined by the wavelengths of visible light that remain.
 - Substance exhibits the color complementary to those absorbed.
 - Example - Violet color of Ti(H₂O)₆³⁺
Table 21.16 - Approximate Relationship of Wavelength of Visible Light Absorbed to Color Observed

<table>
<thead>
<tr>
<th>Absorbed Wavelength in nm (Color)</th>
<th>Observed Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 (violet)</td>
<td>Greenish yellow</td>
</tr>
<tr>
<td>450 (blue)</td>
<td>Yellow</td>
</tr>
<tr>
<td>490 (blue-green)</td>
<td>Red</td>
</tr>
<tr>
<td>570 (yellow-green)</td>
<td>Violet</td>
</tr>
<tr>
<td>580 (yellow)</td>
<td>Dark blue</td>
</tr>
<tr>
<td>600 (orange)</td>
<td>Blue</td>
</tr>
<tr>
<td>650 (red)</td>
<td>Green</td>
</tr>
</tbody>
</table>
Wavelength absorbed by a molecule is determined by the following relationship:

\[\Delta E = \frac{hc}{\lambda} \]

- \(\Delta E \) - Energy spacing in the molecule
- \(\lambda \) - Wavelength of light required
Complex Ion Colors (Continued 2)

- Ligands coordinated to a given metal ion determine the size of the d-orbital splitting
 - Color changes as the ligands are changed
 - Caused by a change in Δ that implies a change in the wavelength of light needed to transfer electrons between the t_{2g} and e_g orbitals
Other Coordination Geometries

- **Tetrahedral arrangement**
 - None of the $3d$ orbitals point at the ligands
 - Difference in energy between the split d orbitals is significantly less
 - Tetrahedral splitting is $\frac{4}{9}$ that of the octahedral splitting for a given ligand and metal ion
Other Coordination Geometries (Continued)

- d-orbital splitting will be opposite to that for the octahedral arrangement
 - d_{xy}, d_{xz}, and d_{yz} orbitals are closer to the point charges
 - Weak-field case (high-spin) always applies as the d-orbital splitting is relatively small for the tetrahedral case
Interactive Example 21.6 - Crystal Field Model III

- Give the crystal field diagram for the tetrahedral complex ion CoCl$_4^{2-}$
The complex ion contains Co$^{2+}$, which has a 3d^7 electron configuration.

- The splitting of the d orbitals will be small, since this is a tetrahedral complex, giving the high-spin case with three unpaired electrons.
Section 21.6
The Crystal Field Model

Figure 21.27 - Crystal Field Diagrams for Octahedral and Tetrahedral Complexes

- $\Delta_{\text{oct}} > \Delta_{\text{tet}}$
- d_{z^2} and $d_{x^2-y^2}$ orbitals point their lobes directly at the point charges, making them relatively high in energy
Section 21.6
The Crystal Field Model

Square Planar Complexes

- Obtained from the octahedral arrangement by removing the two point charges along the z axis
 - Lowers the energy of d_{z^2}
 - Leaves only $d_{x^2-y^2}$
 - Points at the four remaining ligands
Linear Complexes

- Obtained from the octahedral arrangement by:
 - Retaining 2 ligands along the z axis
 - Removing 4 ligands in the xy plane
 - Only d_{z^2} points at the ligands and is highest in energy
Critical Thinking

- This figure shows a crystal field diagram for a square planar complex oriented in the xy plane.
 - What if you oriented the complex in the xz plane?
 - Sketch the crystal field diagram and contrast it with the figure.
Biological Necessity of Metal Ion Complexes

- Used in humans:
 - For the transport and storage of oxygen
 - As electron-transfer agents, catalysts, and drugs
- First-row transition metals are important for human health
Table 21.18 - First-Row Transition Metals and Their Biological Significance

<table>
<thead>
<tr>
<th>First-Row Transition Metal</th>
<th>Biological Function(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scandium</td>
<td>None known.</td>
</tr>
<tr>
<td>Titanium</td>
<td>None known.</td>
</tr>
<tr>
<td>Vanadium</td>
<td>None known in humans.</td>
</tr>
<tr>
<td>Chromium</td>
<td>Assists insulin in the control of blood sugar; may also be involved in the control of cholesterol.</td>
</tr>
<tr>
<td>Manganese</td>
<td>Necessary for a number of enzymatic reactions.</td>
</tr>
<tr>
<td>Iron</td>
<td>Component of hemoglobin and myoglobin; involved in the electron-transport chain.</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Component of vitamin B12, which is essential for the metabolism of carbohydrates, fats, and proteins.</td>
</tr>
<tr>
<td>Nickel</td>
<td>Component of the enzymes urease and hydrogenase.</td>
</tr>
<tr>
<td>Copper</td>
<td>Component of several enzymes; assists in iron storage; involved in the production of color pigments of hair, skin, and eyes.</td>
</tr>
<tr>
<td>Zinc</td>
<td>Component of insulin and many enzymes.</td>
</tr>
</tbody>
</table>
Biological Importance of Iron

- Plays a central role in all living cells
- Mammals gain energy from the oxidation of proteins, carbohydrates, and fats
 - Electrons from the breakdown of the nutrients are passed along the respiratory chain
 - **Cytochromes**: Iron-containing species that are the principal electron-transfer molecules in the respiratory chain
 - Composed of an iron complex (**heme**) and a protein
The Heme Complex

- Contains an Fe$^{2+}$ or Fe$^{3+}$ ion that is coordinated to porphyrin
 - **Porphyrin**: A complicated planar ligand
 - All porphyrins contain the same central ring structure but have different substituent groups at the edges
 - Porphyrin molecules act as tetradeutate ligands for many metal ions
 - Example - Chlorophyll is a magnesium–porphyrin complex
Section 21.7
The Biological Importance of Coordination Complexes

Figure 21.29 - The Heme Complex
Role of Iron in the Storage of Oxygen in Mammals

- **Myoglobin**: Oxygen storage molecule, which consists of a heme complex and a protein
 - Involves the direct bonding between an O_2 molecule and Fe^{2+}
 - When gaseous O_2 is bubbled in an aqueous solution containing heme, Fe^{2+} is oxidized to Fe^{3+}
 - Oxidation does not occur in myoglobin
 - Involves an O_2 bridge between Fe^{2+} ions
Myoglobin

- The Fe\(^{2+}\) ion is coordinated to four nitrogen atoms in the porphyrin of the heme and on nitrogen from the protein chain
 - This leaves a sixth coordination position (the W) available for an oxygen molecule
Role of Iron in the Transportation of Oxygen

- **Hemoglobin**: Molecule that contains four myoglobin-like units
 - Helps in the transportation of oxygen in the blood
 - Each hemoglobin contains two α chains and two β chains, each with a heme complex near the center
 - Can bind four oxygen molecules to form a bright red diamagnetic complex
 - When the oxygen molecule is released, water molecules occupy the sixth coordination position around each Fe^{2+}
Section 21.7

The Biological Importance of Coordination

Complexes

Figure 21.32 - A Representation of the Hemoglobin

Structure
Sickle Cell Anemia

- During protein synthesis for hemoglobin, an improper amino acid is inserted into the protein in two places
 - Due to the nonpolar nature of the incorrect amino acid, the hemoglobin drastically changes its shape
Effect of High Altitudes on Humans

- Reaction between hemoglobin and oxygen

\[
\text{Hb}(aq) + 4\text{O}_2(g) \rightleftharpoons \text{Hb}(\text{O}_2)_4(aq)
\]

Hemoglobin Oxyhemoglobin

- Oxygen content in high altitudes is low
 - Position of the equilibrium will shift to the left according to Le Châtelier’s principle
 - Lower levels of oxyhemoglobin cause fatigue, dizziness, and high-altitude sickness
Effect of High Altitudes on Humans (Continued)

- The human body is capable of adapting to lower levels of oxygen by making more hemoglobin
 - Causes the equilibrium to shift back to the right
- High-altitude acclimatization
 - Effect of high altitude can be felt for a few weeks, but it disappears as hemoglobin levels in the body increase
Toxicity of Carbon Monoxide and the Cyanide Ion

- **Carboxyhemoglobin**: Stable complex of hemoglobin and carbon monoxide
 - Prevents normal oxygen uptake in the blood
 - Can result in asphyxiation

- **Cyanide ion - Respiratory inhibitor**
 - Coordinates strongly to cytochrome oxidase, an iron-containing cytochrome enzyme catalyst
 - Prevents the electron-transfer process, and rapid death results
Metallurgy

- Process of separating a metal from its ore and preparing it for use

- Steps
 - Mining
 - Pretreatment of the ore
 - Reduction to the free metal
 - Purification of the metal (refining)
 - Alloying
Extracting a Metal from Its Ore

- Ore is a mixture of **minerals** (pure metal compounds) and **gangue** (sand, clay, and rock)
- Ores must be treated to remove the gangue
 - Ores are pulverized and then processed in various devices
 - Cyclone separators
 - Inclined vibrating tables
 - Flotation tanks
Extracting a Metal from Its Ore (Continued 1)

- **Flotation process**: Method of separating the mineral particles in an ore from the gangue
 - Depends on the greater wettability of the mineral pieces
 - Crushed ore is fed into a tank with a mixture of water, oil, and detergent
 - A stream of air is blown through the mixture to skim the oil-covered pieces
Extracting a Metal from Its Ore (Continued 2)

- After ensuring that the mineral is concentrated, it is chemically altered for the reduction step
 - Carbonates and hydroxides can be converted by simple heating
 - **Roasting**: Sulfide minerals are converted to oxides by heating in air at temperatures below their melting points
 - **Smelting**: Reducing a metal ion to the free metal
 - Depends on the electron affinity of the metal ion
Zone Refining

- Process used for extracting highly pure metals
- Steps
 - A bar of impure metal travels through a heater
 - Causes the metal to melt and recrystallize as it cools
 - Purification of the metal
 - As the crystal re-forms, metal ions are more likely to fit better in the crystal lattice than are the atoms of impurities
 - Impurities are carried to the end of the bar
Figure 21.35 - Schematic Representation of Zone Refining

Impurities are concentrated in the molten zone here.

Impure solid

Purified solid
Pyrometallurgy

- Traditional metallurgical process that requires tremendous amounts of energy

- Drawbacks
 - Leads to atmospheric pollution
 - High costs make it economically unfeasible to treat low-grade ores
Hydrometallurgy

- Uses aqueous chemical solutions to extract metals from their ores through a process called leaching
- Uses
 - Extraction of gold from low-grade ores
 - Production of alumina (aluminum oxide) from bauxite
Extraction of Gold from Low-Grade Ores

- **Cyanidation**: Process that treats crushed ore with an aqueous cyanide solution in the presence of air
 - Dissolves gold by forming the complex ion \(\text{Au} (CN)_2^- \)

 \[
 4\text{Au} (s) + 8\text{CN}^- (aq) + \text{O}_2 (g) + 2\text{H}_2\text{O}(l) \rightarrow 4\text{Au} (CN)_2^- (aq) + 4\text{OH}^- (aq)
 \]

 - Pure gold is then recovered by reaction of the \(\text{Au} (CN)_2^- \) solution with zinc powder to reduce \(\text{Au}^+ \) to \(\text{Au} \)

 \[
 2\text{Au} (CN)_2^- (aq) + \text{Zn} (s) \rightarrow 2\text{Au} (s) + \text{Zn} (CN)_4^{2-} (aq)
 \]
Extraction of Alumina from Bauxite

- Conducted using the Bayer process
 - The ore is leached with sodium hydroxide at high temperatures and pressures to dissolve the amphoteric aluminum oxide

\[
\text{Al}_2\text{O}_3(s) + 2\text{OH}^- (aq) \rightarrow 2\text{AlO}_2^- (aq) + \text{H}_2\text{O}(l)
\]

- Leaves behind solid impurities such as SiO\(_2\), Fe\(_2\)O\(_3\), and TiO\(_2\)
Extraction of Alumina from Bauxite (Continued)

- After the impurities are removed, the pH of the solution is lowered, and pure aluminum oxide is formed.
- The product is electrolyzed to produce aluminum metal.
Steps in Hydrometallurgy

- Selective leaching of a metal from its ore
 - Leaching agent
 - Can be water if the metal-containing compound is a water-soluble chloride or sulfate
 - If the metal is present in a water-insoluble substance, aqueous solutions containing acids, bases, oxidizing agents, and salts are used
 - Recovering the metal ion from the solution by selective precipitation as an ionic compound
Metallurgy of Iron

- Iron is found in the earth’s crust in many minerals
 - Iron pyrite (FeS$_2$)
 - Siderite (FeCO$_3$)
 - Hematite (Fe$_2$O$_3$)
 - Magnetite (FeO · Fe$_2$O$_3$)
 - Taconite ores
- Iron is reduced in a **blast furnace**
Figure 21.36 - The Blast Furnace

- Iron ore, limestone, and coke enter the blast furnace.
- Exhaust gases exit at the top.
- Oxygen-enriched air is injected at the bottom.
- Pig iron is produced at the bottom.
- Slag is formed at the top.
- Reactions:
 - $3\text{Fe}_2\text{O}_3 + \text{CO} \rightarrow 2\text{Fe}_3\text{O}_4 + \text{CO}_2$
 - $\text{Fe}_3\text{O}_4 + \text{CO} \rightarrow 3\text{FeO} + \text{CO}_2$
 - $\text{FeO} + \text{CO} \rightarrow \text{Fe} + \text{CO}_2$
 - $\text{C} + \text{CO}_2 \rightarrow 2\text{CO}$
 - $\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2$
 - $\text{CaO} + \text{SiO}_2 \rightarrow \text{CaSiO}_3$
 - $\text{C} + \text{O}_2 \rightarrow \text{CO}_2$
 - $\text{C} + \text{CO}_2 \rightarrow 2\text{CO}$

Copyright ©2017 Cengage Learning. All Rights Reserved.
Metallurgy of Iron - Terms

- **Slag**: Molten calcium silicate and alumina
 - Product of the reaction between CaCO$_3$ that loses CO$_2$ in the blast furnace and combines with silica and other impurities
 \[
 \text{CaO} + \text{SiO}_2 \rightarrow \text{CaSiO}_3
 \]

- **Pig iron**: Impure iron that is collected from the blast furnace
Production of Steel

- Steel is an alloy
- Can be classified as:
 - **Carbon steel**: Contains approximately 1.5% carbon
 - **Alloy steel**: Contains carbon and Cr, Co, Mn, or Mo
- Iron is converted to steel by an oxidation process that eliminates unwanted impurities
 - Open hearth process
 - Basic oxygen process
Oxidation Reactions of Steelmaking

- Manganese, phosphorus, and silicon in the impure iron react with oxygen to form oxides
 - Oxides react with fluxes to form slag
 - Choice of flux depends on the major impurities present

\[
\text{Acidic flux: } \text{MnO}(s) + \text{SiO}_2(s) \xrightarrow{\text{Heat}} \text{MnSiO}_3(l) \\
\text{Basic flux: } \text{SiO}_2(s) + \text{MgO}(s) \xrightarrow{\text{Heat}} \text{MgSiO}_3(l) \\
\text{P}_4\text{O}_{10}(s) + 6\text{CaO}(s) \xrightarrow{\text{Heat}} 2\text{Ca}_3(\text{PO}_4)_2(l)
\]
Figure 21.37 - Schematic Diagram of the Open Hearth Process for Steelmaking
Basic Oxygen Process for Steelmaking

- Faster method
- Exothermic oxidation reactions proceed rapidly
 - Produce enough heat to raise the temperature nearly to the boiling point of iron without an external heat source
Electric Arc Method of Steel Making

- An electric arc between carbon electrodes is used to melt the charge
 - No fuel-borne impurities are added to the steel, since no fuel is needed
- Higher temperatures lead to more effective removal of sulfur and phosphorus impurities
- Oxygen is added in the process
 - Helps control oxide impurities in the steel effectively
Heat Treatment of Steel

- Pure iron exists in two crystalline forms based on the temperature
 - α-iron - Body-centered cubic structure of iron when the temperature is less than 912° C
 - Austenite or γ-iron - Iron has a face-centered cubic structure when temperature is between 912° C and 1394° C
 - δ-iron - Body-centered cubic structure identical to α-iron at 1394° C
Alloying Iron with Carbon

- Forms the interstitial alloy carbon steel
- The temperature at which α-iron is converted to austenite falls by 200°C
 - At high temperatures, iron and carbon can react to form cementite, an iron carbide
 \[3 \text{Fe} + C + \text{energy} \rightleftharpoons \text{Fe}_3\text{C}\]
 - Thus, steel is a mixture of iron metal in one of its crystal forms, carbon, and cementite
Alloying Iron with Carbon (Continued 1)

- Much of the carbon is converted to cementite when steel is heated to 1000°C
 - The equilibrium shifts to the left if the steel is allowed to cool slowly
 - Small crystals of carbon precipitate
 - The equilibrium does not have time to adjust if the cooling is rapid
 - The cementite is trapped, and the steel has a high cementite content
Alloying Iron with Carbon (Continued 2)

- **Tempering**: Heating a mixture to intermediate temperatures followed by a rapid cooling process
 - Used for fine-tuning the proportions of carbon crystals and cementite in steel to give the desired properties