

Chapter 21

Transition Metals and Coordination Chemistry

Copyright ©2017 Cengage Learning. All Rights Reserved.

Zumdahl

Chapter 21 *Table of Contents*

- (21.1) The transition metals: A survey
- (21.2) The first-row transition metals
- (21.3) Coordination compounds
- (21.4) Isomerism
- (21.5) Bonding in complex ions: The localized electron model
- (21.6) The crystal field model
- (21.7) The biological importance of coordination complexes
- (21.8) Metallurgy and iron and steel production

Transition Metals - Properties

- Show great similarities within a given period and a given vertical group
 - Attributed to the fact that inner electrons are the last electrons added
 - *d*-block transition metals receive *d* electrons
 - Lanthanides and actinides receive f electrons
 - Inner electrons cannot participate easily in bonding

Figure 21.1 - Transition Elements on the Periodic Table

d-block transition elements

Copyright ©2017 Cengage Learning. All Rights Reserved.

Transition Metals - Properties (Continued 1)

- Behave like typical metals
 - Possess metallic luster and high electrical and thermal conductivities
- Display variations in physical properties
 - Melting points
 - Tungsten 3400° C
 - Mercury 25° C
 - Iron and titanium are hard and strong, whereas copper and gold are relatively soft

Transition Metals - Properties (Continued 2)

- Display variations in chemical reactivity
 - Example Some transition metals react readily to form oxides
 - The oxides of chromium, nickel, and cobalt adhere to the metallic surface and protect the metal from further oxidation
 - The oxide of iron scales off, exposing new metal to corrosion

Forming Ionic Compounds - Trends

- More than one oxidation state is often found
- Cations are often complex ions
 - Complex ions: Species where the transition metal ion is surrounded by a certain number of ligands
 - Ligands Molecules or ions that behave as Lewis bases
 - Example
 - [Co(NH₃)₆]Cl₃ contains Co(NH₃)₆³⁺ cations and Cl⁻ anions

A Complex Ion - $Co(NH_3)_6^{3+}$

Forming Ionic Compounds - Trends (Continued)

- Compounds are colored
 - Transition metal ion in the complex ion can absorb visible light of specific wavelengths
- Compounds are paramagnetic
 - Contain unpaired electrons

First-Row Transition Metals - Electron Configurations

- 3d orbitals begin to fill after the 4s orbital is complete
- Exceptions
 - Chromium (Cr) [Ar]4s¹3d⁵
 - Copper [Ar]4s¹3d¹⁰
- A set of orbitals with the same energy is said to be degenerate

First-Row Transition Metals - Electron Configurations (Continued)

- First-row transition metal ions do not have 4s electrons
 - Energy of the 3d orbitals is significantly less than that of the 4s orbital
 - Example
 - Configuration of neutral titanium [Ar]4s²3d²
 - Configuration of Ti³⁺ [Ar]3d¹

Oxidation States

- Transition metals can form a variety of ions by losing one or more electrons
- Note
 - For the first five elements, the maximum possible oxidation state is related to the loss of all the 4s and 3d electrons

Ionization Energy

- Increases gradually from left to right across the period
 - Third ionization energy increases faster than the first ionization energy
 - Proves that there is significant decline in the energy of the 3d orbitals while going across the period

Figure 21.2 - Plots of the First and Third Ionization Energies for the First-Row Transition Metals

Copyright ©2017 Cengage Learning. All Rights Reserved.

Standard Reduction Potentials

Half-reaction of a metal that acts as a reducing agent

 $M \rightarrow M^{n+} + ne^{-}$

- This is the reverse of the conventional half-reactions
- The metal with most positive potential is the best reducing agent

Table 21.3 - Relative Reducing Abilities of the First-RowTransition Metals in Aqueous Solution

Reaction	Potential (V)
Reaction Sc \rightarrow Sc ³⁺ + 3e ⁻ Ti \rightarrow Ti ²⁺ + 2e ⁻ V \rightarrow V ²⁺ + 2e ⁻ Mn \rightarrow Mn ²⁺ + 2e ⁻ Cr \rightarrow Cr ²⁺ + 2e ⁻ Zn \rightarrow Zn ²⁺ + 2e ⁻ Fe \rightarrow Fe ²⁺ + 2e ⁻ Co \rightarrow Co ²⁺ + 2e ⁻ Ni \rightarrow Ni ²⁺ + 2e ⁻ Ni \rightarrow Ni ²⁺ + 2e ⁻	2.08 1.63 1.2 1.18 0.91 0.76 0.76 0.44 0.28 0.23
$Cu \rightarrow Cu^{2+} + 2e^{-}$	-0.34

Standard Reduction Potentials (Continued)

$$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$$

- For this reaction, $E^{\circ} = 0$
 - All metals except Cu can reduce H⁺ ions to H₂(g) in 1 M aqueous solution of strong acid

$$\mathbf{M}(s) + 2\mathbf{H}^{+}(aq) \rightarrow \mathbf{H}_{2}(g) + \mathbf{M}^{2+}(aq)$$

- The reducing abilities of the first-row transition metals decrease going from left to right across the period
 - Exceptions Chromium and zinc

Figure 21.3 - Atomic Radii of the 3*d*, 4*d*, and 5*d* Transition Series

Copyright ©2017 Cengage Learning. All Rights Reserved.

4d and 5d Transition Series - Trends

- 4*d* and 5*d* metals are similar in size
- Lanthanide contraction: The decrease in the atomic radii of the lanthanide series elements, going from left to right in the periodic table
 - Caused by increase in nuclear charge
 - Offsets the normal increase in size due to going from one principal quantum level to another

4d and 5d Transition Series - Trends (Continued 1)

- Differences in size between 4d and 5d transition elements in a group increase gradually from left to right
- Useful properties of 4d and 5d metals
 - Zirconium and zirconium oxide are highly resistant to high temperatures
 - Used along with niobium and molybdenum alloys in space vehicle parts

4d and 5d Transition Series - Trends (Continued 2)

- Tantalum displays high resistance to the attack of body fluids
 - Used for replacement of bones
- Platinum group metals
 - Used as catalysts for industrial processes

Scandium

- Rare element
- Exists in compounds in the +3 oxidation state
- Chemistry strongly resembles that of the lanthanides
 - Most of its compounds are colorless and diamagnetic
- Scandium metal is prepared by electrolysis of molten ScCl₃

Titanium

- Low density and high strength
 - Used in jet engines and to make pipes, pumps, and reaction vessels in the chemical industry
- Titanium(IV) oxide, TiO₂
 - Highly opaque substance
 - Used as white pigment in paper, paint, and plastics
 - Main ores Rutile and ilmenite
- Exists in compounds in the +4 oxidation state

Titanium (Continued)

- Titanium(III) compounds
 - Produced by reduction of the +4 state
 - Exists as the purple Ti(H₂O)₆³⁺ ion in aqueous solution
 - Slowly oxidized to titanium(IV) by air
- Titanium(II)
 - Not stable in aqueous solution
 - Exists in solid state in compounds such as TiO and the dihalides of general formula TiX₂

Vanadium

- Used in alloys with titanium and iron
- Hard and corrosion resistant
- Vanadium(V) oxide (V₂O₅)
 - Useful industrial catalyst for the production of sulfuric acid
- Pure form can be extracted from the electrolytic reduction of fused salts
- Principal oxidation state: +5

Table 21.4 - Oxidation States and Species for Vanadiumin Aqueous Solution

Oxidation State of Vanadium	Species in Aqueous Solution
+5	VO ₂ + (yellow)
+4	VO ²⁺ (blue)
+3	V ³⁺ (aq) (blue-green)
+2	V ²⁺ (aq) (violet)

Chromium

- Rare element and an important industrial material
- Chief ore Chromite (FeCr₂O₄)
 - Reduced by carbon to produce ferrochrome, which can be added to iron for making steel

$$\operatorname{FeCr}_{2}O_{4}(s) + 4C(s) \rightarrow \operatorname{Fe}(s) + 2Cr(s) + 4CO(g)$$
Ferrochrome

Copyright ©2017 Cengage Learning. All Rights Reserved.

Chromium (Continued 1)

- Chromium metal
 - Hard and brittle
 - Maintains a bright surface by creating a tough invisible oxide coating
- Forms compounds in which Cr has the oxidation state +2, +3, or +6
- Chromous ion (Cr²⁺) is a powerful reducing agent in aqueous solution

Chromium (Continued 2)

- Chromium (VI) species are excellent oxidizing agents in acidic solution
 - Reduction of dichromate ion (Cr₂O₇²⁻) to the Cr³⁺ ion
 - Oxidizing ability of dichromate ion is pH-dependent

 $\operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}(aq) + 14\operatorname{H}^{+}(aq) + 6e^{-} \rightarrow 2\operatorname{Cr}^{3+}(aq) + 7\operatorname{H}_{2}\operatorname{O}(l) \qquad E^{\circ} = 1.33 \text{ V}$

- Exists as the chromate ion in a basic solution
 - Less powerful as an oxidizing agent

 $Cr_2O_4^{2-}(aq) + 4H_2O(l) + 3e^- \rightarrow Cr(OH)_3(s) + 5OH^-(aq) = -0.13 V$

Chromium (Continued 3)

- Red chromium(VI) oxide dissolves in H₂O
 - Product is a strongly acidic, red-orange solution $2\operatorname{CrO}_3(s) + \operatorname{H}_2\operatorname{O}(l) \rightarrow 2\operatorname{H}^+(aq) + \operatorname{Cr}_2\operatorname{O}_7^{2-}(aq)$
 - When made basic, the solution turns yellow
 - Chromate salts can be obtained
 - Cleaning solution Mixture of chromium(VI) oxide and concentrated H₂SO₄
 - Powerful oxidizing medium that can remove organic materials from analytical glassware

Figure 21.4 - Structures of the Chromium(VI) Anions

Copyright ©2017 Cengage Learning. All Rights Reserved.

Manganese

- Used for producing hard steel, which is used for rock crushers, bank vaults, and armor plates
- Source Manganese nodules
 - Found on the ocean floor in the form of spherical rocks
 - Rocks contain mixtures of manganese, iron oxides, and small traces of cobalt, nickel, and copper
- Exists in all oxidation states from +2 to +7

Table 21.6 - Some Compounds of Manganese in itsmost Common Oxidation States

Oxidation State of Manganese	Examples of Compounds
+2	Mn(OH) ₂ (pink) MnS (salmon) MnSO ₄ (reddish) MnCl ₂ (pink)
+4	MnO ₂ (dark brown)
+7	KMnO₄ (purple)

Iron

- Most abundant heavy metal
- Appears white and lustrous
- Highly reactive toward oxidizing agents
 - Example Iron rapidly oxidizes in moist air to form rust
- Chemistry of iron involves its +2 and +3 oxidation states

Table 21.7 - Typical Compounds of Iron

Oxidation State of Iron	Examples of Compounds
+2	FeO (black) FeS (brownish black) FeSO₄ • 7H₂O (green) K₄Fe(CN) ₆ (yellow)
+3	FeCl ₃ (brownish black) Fe ₂ O ₃ (reddish brown) K ₃ Fe(CN) ₆ (red) Fe(SCN) ₂ (red)
+2, +3 (mixture)	Fe ₃ O ₄ (black) KFe[Fe(CN) ₆] (deep blue, "Prussian blue")

Cobalt

- Rare element
 - Ores Smaltite (CoAs₂) and cobaltite (CoAsS)
- Appears bluish white
- Used in alloys such as stainless steel and stellite
- Chemistry of cobalt involves its +2 and +3 oxidation states
- Forms a wide variety of coordination compounds

Table 21.8 - Typical Compounds of Cobalt

Oxidation State of Cobalt	Examples of Compounds
+2	CoSO ₄ (dark blue) [Co(H ₂ O) ₆]Cl ₂ (pink) [Co(H ₂ O) ₆](NO ₃) ₂ (red) CoS (black)
+3	CoO (greenish brown) CoF ₃ (brown) Co ₂ O ₃ (charcoal) K ₃ [Co(CN) ₆] (yellow) [Co(NH ₃) ₆]Cl ₃ (yellow)

Nickel

- Found in ores in combination with arsenic, antimony, and sulfur
- Silvery white metal
- Has high electric and thermal conductivity
- Resistant to corrosion
 - Used for plating active metals and in the production of alloys such as steel
- Exists in compounds in the +2 oxidation state

Table 21.9 - Typical Compounds of Nickel

Oxidation State of Nickel	Examples of Compounds
+2	NiCl ₂ (yellow) [Ni(H ₂ O) ₆]Cl ₂ (green) NiO (greenish black) NiS (black) [Ni(H ₂ O) ₆]SO ₄ (green) [Ni(NH ₃) ₆](NO ₃) ₂ (blue)

Copper

- Widely abundant in natural ores that contain sulfides, arsenides, chlorides, and carbonates
- Valued for its high electrical conductivity and its resistance to corrosion
 - Used for plumbing and electrical applications
- Constituent in alloys such as brass, sterling silver, and gold (18-karat)

Copper (Continued)

- Corrodes when exposed to air
 - Produces a green patina that consists of basic copper sulfate

 $3\mathrm{Cu}(s) + 2\mathrm{H}_{2}\mathrm{O}(l) + \mathrm{SO}_{2}(g) + 2\mathrm{O}_{2}(g) \rightarrow \mathrm{Cu}_{3}(\mathrm{OH})_{4}\mathrm{SO}_{4}(s)$ Basic copper sulfate

- Chemistry of copper principally involves the +2 oxidation state
- Can be toxic if consumed in large amounts

Table 21.11 - Typical Compounds of Copper

Oxidation State of Copper	Examples of Compounds
+1	Cu_2O (red) Cu_2S (black)
+2	CuCl (white) CuO (black) CuSO ₄ \cdot 5H ₂ O (blue) CuCl ₂ \cdot 2H ₂ O (green) [Cu(H ₂ O) ₆](NO ₃) ₂ (blue)

Zinc

- Refined from sphalerite (ZnS), which occurs with galena (PbS)
- White and lustrous
- Highly active metal
 - Excellent reducing agent and has the tendency to tarnish rapidly
- Used for galvanizing steel
- Forms colorless salts in the +2 oxidation state

Coordination Compound

- Consists of a complex ion and counterions
 - Complex ion Transition metal ion with its attached ligands
 - Counterions: Anions or cations that are required to produce a compound with no net charge
- Example [Co(NH₃)₅Cl]Cl₂
 - Brackets indicate the complex ion composition

Alfred Werner

- Proposed that transition metal ions have two types of valence
 - Primary valence Ability to form ionic bonds with oppositely charged ions
 - Currently termed as the oxidation state
 - Secondary valence Ability to bind to ligands (Lewis bases) and form complex ions
 - Currently termed as the coordination number

Coordination Number

- Number of bonds formed by metal ions to ligands in complex ions
 - Varies from two to eight based on the size, charge, and electron configuration of the transition metal ion
- Metal ions can have more than one coordination number

Table 21.12 - Typical Coordination Numbers for SomeCommon Metal Ions

М	Coordination Numbers	M ²⁺	Coordination Numbers	M ³⁺	Coordination Numbers
Cu+ Ag+ Au+	2, 4 2 2, 4	Mn ²⁺ Fe ²⁺ Co ²⁺ Ni ²⁺ Cu ²⁺ Zn ²⁺	4, 6 6 4, 6 4, 6 4, 6 4, 6	Sc ³⁺ Cr ³⁺ Co ³⁺ Au ³⁺	6 6 4

Typical Geometries of Coordination Numbers

- Linear
 - Produced by two ligands
- Tetrahedral or square planar
 - Produced by four ligands
- Octahedral
 - Produced by six ligands

Ligands

- Neutral molecule or ion having a lone electron pair that is used to form a bond to a metal ion
 - Coordinate covalent bond: Metal–ligand bond resulting from the interaction between a Lewis base (the ligand) and a Lewis acid (the metal ion)

Types of Ligands

Monodentate (unidentate) ligand

Can form one bond to a metal ion

Chelating ligand (chelate)

 Has more than one atom with a lone pair that can bond to a metal ion

 M^{n+}

Ammonia (NH₃) is a unidentate ligand

Chelating Ligands

Bidentate ligand

- Can form two bonds to a metal ion
- Polydentate ligand
 - Can form more than two bonds to a metal ion

- Can form as many as six bonds to a metal ion
 - Example Ethylenediaminetetraacetate (EDTA)

Bidentate ligand ethylenediamine

Figure 21.7 - The Coordination of EDTA with a 2+ Metal lon

Copyright ©2017 Cengage Learning. All Rights Reserved.

Rules for Naming Coordination Compounds

- Ionic compound
 - Cation is named before the anion
- Complex ion
 - Ligands are named before the metal ion
- Ligands
 - An 'o' is added to the root name of the anion
 - For a neutral ligand, the name of the molecule is used
 - Exception H₂O, NH₃, CO, and NO

Rules for Naming Coordination Compounds (Continued 1)

- Number of simple ligands are denoted by prefixes mono-, di-, tri-, tetra-, penta-, and hexa-
 - Prefixes bis-, tris-, tetrakis-, and so on are used for more complicated ligands or ones that already contain di-, tri-, and so on
- The oxidation state of the central metal ion is designated by a Roman numeral in parentheses

Rules for Naming Coordination Compounds (Continued 2)

- When more than one type of ligand is present, they are named alphabetically
 - Prefixes have no effect on the order
- If the complex ion has a negative charge, the suffix -ate is added to the name of the metal

Interactive Example 21.1 - Naming Coordination Compounds I

- Give the systematic name for the following coordination compound:
 - [Fe(en)₂(NO₂)₂]₂SO₄

Interactive Example 21.1 - Solution

- First determine the oxidation state of the iron by looking at the other charged species
 - Four NO_2^- ions and one SO_4^{2-} ion
 - The ethylenediamine is neutral
 - Thus, the two iron ions must carry a total positive charge of 6 to balance the six negative charges, which means that each iron has a +3 oxidation state and is designated as iron(III)

Interactive Example 21.1 - Solution (Continued)

- Since the name ethylenediamine already contains di, we use bis- instead of di- to indicate the two en ligands
- The name for NO₂⁻ as a ligand is nitro, and the prefix di- indicates the presence of two NO₂⁻ ligands
- Since the anion is sulfate, the compound's name is:

Copyright ©2017 Cengage Learning. All Rights Reserved.

Exercise

- Give formulas for the following:
 - a. Potassium tetrachlorocobaltate(II)

K₂[CoCl₄]

b. Aquatricarbonylplatinum(II) bromide

[Pt(H₂O)(CO)₃]Br₂

c. Triamminechloroethylenediaminechromium(III) iodide

$[Cr(NH_3)_3Cl(H_2NCH_2CH_2NH_2)]I_2$

Concept of Isomerism

- Isomers: Two or more species with the same formula but different properties
- Types
 - Structural isomerism: Isomers contain the same atoms
 - Only one or more bonds differ
 - Stereoisomerism: All bonds in the isomers are the same
 - Spatial arrangements of the atoms are different

Figure 21.8 - Some Classes of Isomers

Structural Isomerism

- Coordination isomerism: Composition of the complex ion varies
- Linkage isomerism: Composition of the complex ion is the same, but the point of attachment of at least one of the ligands differs

Stereoisomerism

- Geometrical (*cis-trans*) isomerism: Atoms or groups of atoms can assume different positions around a rigid ring or bond
 - Cis isomer: Molecules are next to each other
 - Trans isomer: Molecules are across from each other

Figure 21.11 - *Cis* and *Trans* Isomers of the Complex Compound $[Co(NH_3)_4Cl_2]^+$

Stereoisomerism (Continued)

- Optical isomerism: Isomers have opposite effects on plane-polarized light
 - When light is emitted from a source, the oscillating electric fields of the photons in the beam are oriented randomly
 - Plane-polarized light constitutes photons with electric fields that oscillate in a single plane

Figure 21.12 - Unpolarized Light and Plane-Polarized Light

Figure 21.13 - Rotation of the Plane of Polarized Light by an Optically Active Substance

Optical Activity

- Exhibited by molecules that have nonsuperimposable mirror images
 - Considered to be chiral
- Enantiomers: Isomers that are nonsuperimposable mirror images of each other
 - Rotate plane-polarized light in opposite directions
 - Hence, they are optical isomers

Figure 21.15 - The Human Hand, a Nonsuperimposable Mirror Image

Copyright ©2017 Cengage Learning. All Rights Reserved.

Enantiomers

- Dextrorotatory (d)
 - Isomer that rotates the plane of light to the right
- Levorotatory (/)
 - Isomer that rotates the plane of light to the left
- Racemic mixture
 - Solution containing an equal mixture of d and l forms
 - Does not rotate the plane of the polarized light as the opposite effects cancel each other

Copyright ©2017 Cengage Learning. All Rights Reserved.

Section 21.4 Isomerism

Geometric Isomers and Optical Isomers

- Geometric isomers are not necessarily optical isomers
 - Example The *trans* isomer of [Co(en)₂Cl₂]⁺ and its mirror image are identical
 - Since the isomer is superimposable on its mirror image, it does not exhibit optical isomerism and is not chiral

Geometric Isomers and Optical Isomers (Continued)

- Example The *cis* isomer of [Co(en)₂Cl₂]⁺ and its mirror image are not superimposable
 - Thus, they are a pair of optical isomers
 - Isomer II has the same structure as the mirror image of isomer I

Example 21.3 - Geometrical and Optical Isomerism

- Does the complex ion [Co(NH₃)Br(en)₂]²⁺ exhibit geometrical isomerism?
 - Does it exhibit optical isomerism?

Section 21.4 Isomerism

Example 21.3 - Solution

 The complex ion exhibits geometrical isomerism because the ethylenediamine ligands can be across from or next to each other

Section 21.4 Isomerism

Example 21.3 - Solution (Continued)

 The cis isomer of the complex ion also exhibits optical isomerism because its mirror images cannot be turned in any way to make them superimposable

 Thus, these mirror-image isomers of the *cis* complex are shown to be enantiomers that will rotate plane-polarized light in opposite directions

Section 21.5 Bonding in Complex Ions: The Localized Electron Model

Key Points

- 1. The VSEPR model does not help determine the structure of complex ions
 - It is safe to assume that:
 - A complex ion with a coordination number of 6 will have octahedral arrangement of ligands
 - Complexes with two ligands will be linear
 - Complex ions with a coordination number of 4 can be either tetrahedral or square planar
 - No reliable way exists to predict which will occur

Section 21.5 Bonding in Complex Ions: The Localized Electron Model

Key Points (Continued)

- 2. Interaction between a metal ion and a ligand can be viewed as a Lewis acid–base reaction
 - The ligand donates a lone pair of electrons to an empty orbital of the metal ion to form a coordinate covalent bond

Section 21.5 Bonding in Complex Ions: The Localized Electron Model

Hybrid Orbitals Required for Complex Ion Formation

Based on the number and arrangement of ligands

Tetrahedral ligand arrangement; sp³ hybridization

Square planar ligand arrangement; *dsp*² hybridization

Linear ligand arrangement; *sp* hybridization

The Crystal Field Model - An Introduction

- Focuses on the energies of the *d* orbitals
- Attempts to account for the magnetic properties and colors of complex ions
- Assumptions
 - Ligands can be approximated by negative point charges
 - Metal–ligand bonding is entirely ionic

Figure 21.20 - Octahedral Arrangement of Point-Charge Ligands and the Orientation of the 3*d* Orbitals

Copyright ©2017 Cengage Learning. All Rights Reserved.

Octahedral Complexes

- d_{z^2} and $d_{x^2-y^2}$ point their lobes directly at the point-charge ligands
- *d_{xz}*, *d_{yz}*, and *d_{xy}* point their lobes between the point charges
- Negative point-charge ligands repel negatively charged electrons
 - Electrons will first fill the *d* orbitals farthest from the ligands to minimize repulsions

Figure 21.21 - The Energies of the 3*d* Orbitals for a Metal Ion in an Octahedral Complex

Splitting of 3*d* Orbital Energies (Δ)

- Explains the color and magnetism of complex ions of the first-row transition metal ions
- Strong-field case: Splitting produced by ligands is very large
 - Electrons pair in the lower-energy t_{2g} orbitals
 - Gives a diamagnetic complex in which all the electrons are paired
 - Low-spin case: Yields the minimum number of unpaired electrons

Splitting of 3*d* Orbital Energies (Δ) (Continued)

- Weak-field case: Splitting is small
 - Causes the electrons to occupy all five orbitals prior to pairing
 - The resulting complex contains four unpaired electrons and will be paramagnetic
 - High-spin case: Yields the maximum number of unpaired electrons

Figure 21.22 - Possible Electron Arrangements in the Split 3*d* Orbitals in an Octahedral Complex of Co³⁺

Critical Thinking

- What if you are told the number of unpaired electrons for a coordinate covalent ion and are asked to tell if the ligand produced a strong or weak field?
 - Give an example of a coordinate covalent ion for which you could decide if it produced a strong or weak field and one for which you couldn't, and explain your answers

Interactive Example 21.4 - Crystal Field Model I

- The Fe(CN)₆³⁻ ion is known to have one unpaired electron
 - Does the CN⁻ ligand produce a strong or weak field?

Interactive Example 21.4 - Solution

- The ligand is CN⁻ and the overall complex ion charge is 3⁻
 - The metal ion must be Fe³⁺, which has a 3d⁵ electron configuration
 - There are two possible arrangements of the five electrons in the *d* orbitals split by the octahedrally arranged ligands

Interactive Example 21.4 - Solution (Continued)

- The strong-field case gives one unpaired electron, which agrees with the experimental observation
- The CN⁻ ion is a strong-field ligand toward the Fe³⁺ ion

Spectrochemical Series

 Listing of ligands in order based on their ability to produce *d*-orbital splitting

 Magnitude of Δ for a given ligand increases as the charge on the metal ion increases

Interactive Example 21.5 - Crystal Field Model II

Predict the number of unpaired electrons in the complex ion Cr(CN)₆^{4–}

Interactive Example 21.5 - Solution

- The net charge of 4⁻ means that the metal ion present must be Cr²⁺ (-6 + 2 = -4), which has a 3d⁴ electron configuration
 - Since CN⁻ is a strong-field ligand, the correct crystal field diagram for Cr(CN)₆⁴⁻ is

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 21.5 - Solution (Continued)

- The complex ion will have two unpaired electrons
- Note that the CN⁻ ligand produces such a large splitting that all four electrons will occupy the t_{2g} set even though two of the electrons must be paired in the same orbital

Complex Ion Colors

- When a substance absorbs certain wavelengths of light in the visible region, its color is determined by the wavelengths of visible light that remain
 - Substance exhibits the color complementary to those absorbed
 - Example Violet color of Ti(H₂O)₆³⁺

Table 21.16 - Approximate Relationship of Wavelengthof Visible Light Absorbed to Color Observed

Absorbed Wavelength in nm (Color)	Observed Color
400 (violet)	Greenish yellow
450 (blue)	Yellow
490 (blue-green)	Red
570 (yellow-green)	Violet
580 (yellow)	Dark blue
600 (orange)	Blue
650 (red)	Green

Complex Ion Colors (Continued 1)

 Wavelength absorbed by a molecule is determined by the following relationship:

$$\Delta E = \frac{hc}{\lambda}$$

- ΔE Energy spacing in the molecule
- λ Wavelength of light required

Complex Ion Colors (Continued 2)

- Ligands coordinated to a given metal ion determine the size of the *d*-orbital splitting
 - Color changes as the ligands are changed
 - Caused by a change in ∆ that implies a change in the wavelength of light needed to transfer electrons between the t_{2g} and e_g orbitals

Other Coordination Geometries

- Tetrahedral arrangement
 - None of the 3d orbitals point at the ligands
 - Difference in energy between the split *d* orbitals is significantly less
 - Tetrahedral splitting is $\frac{4}{9}$ that of the octahedral splitting for a given ligand and metal ion

Other Coordination Geometries (Continued)

- *d*-orbital splitting will be opposite to that for the octahedral arrangement
 - d_{xy} , d_{xz} , and d_{yz} orbitals are closer to the point charges
 - Weak-field case (high-spin) always applies as the *d*-orbital splitting is relatively small for the tetrahedral case

Interactive Example 21.6 - Crystal Field Model III

 Give the crystal field diagram for the tetrahedral complex ion CoCl₄²⁻

Interactive Example 21.6 - Solution

- The complex ion contains Co²⁺, which has a 3d⁷ electron configuration
 - The splitting of the *d* orbitals will be small, since this is a tetrahedral complex, giving the high-spin case with three unpaired electrons

Figure 21.27 - Crystal Field Diagrams for Octahedral and Tetrahedral Complexes

- $\Delta_{\text{oct}} > \Delta_{\text{tet}}$
 - d_z² and d_x²-y²
 orbitals point their
 lobes directly at
 the point charges,
 making them
 relatively high in
 energy

Square Planar Complexes

- Obtained from the octahedral arrangement by removing the two point charges along the z axis
 - Lowers the energy of d_z²
 - Leaves only $d_x^2 y^2$
 - Points at the four remaining ligands

Linear Complexes

- Obtained from the octahedral arrangement by:
 - Retaining 2 ligands along the z axis
 - Removing 4 ligands in the xy plane
 - Only d_{z^2} points at the ligands and is highest in energy

Copyright ©2017 Cengage Learning. All Rights Reserved.

Critical Thinking

- This figure shows a crystal field diagram for a square planar complex oriented in the xy plane
 - What if you oriented the complex in the xz plane?
 - Sketch the crystal field diagram and contrast it with the figure

Section 21.7 The Biological Importance of Coordination Complexes

Biological Necessity of Metal Ion Complexes

- Used in humans:
 - For the transport and storage of oxygen
 - As electron-transfer agents, catalysts, and drugs
- First-row transition metals are important for human health

Section 21.7 The Biological Importance of Coordination Complexes

Table 21.18 - First-Row Transition Metals and TheirBiological Significance

First-Row Transition Metal	Biological Function(s)
Scandium	None known.
Titanium	None known.
Vanadium	None known in humans.
Chromium	Assists insulin in the control of blood sugar; may also be involved in the control of cholesterol.
Manganese	Necessary for a number of enzymatic reactions.
Iron	Component of hemoglobin and myoglobin; involved in the electron- transport chain.
Cobalt	Component of vitamin B_{12} , which is essential for the metabolism of carbohydrates, fats, and proteins.
Nickel	Component of the enzymes urease and hydrogenase.
Copper	Component of several enzymes; assists in iron storage; involved in the production of color pigments of hair, skin, and eyes.
Zinc	Component of insulin and many enzymes.

Section 21.7 The Biological Importance of Coordination Complexes

Biological Importance of Iron

- Plays a central role in all living cells
- Mammals gain energy from the oxidation of proteins, carbohydrates, and fats
 - Electrons from the breakdown of the nutrients are passed along the respiratory chain
 - Cytochromes: Iron-containing species that are the principal electron-transfer molecules in the respiratory chain
 - Composed of an iron complex (heme) and a protein

The Heme Complex

- Contains an Fe²⁺ or Fe³⁺ ion that is coordinated to porphyrin
 - Porphyrin: A complicated planar ligand
 - All porphyrins contain the same central ring structure but have different substituent groups at the edges
 - Porphyrin molecules act as tetradentate ligands for many metal ions
 - Example Chlorophyll is a magnesium—porphyrin complex

Figure 21.29 - The Heme Complex

Role of Iron in the Storage of Oxygen in Mammals

- Myoglobin: Oxygen storage molecule, which consists of a heme complex and a protein
 - Involves the direct bonding between an O₂ molecule and Fe²⁺
 - When gaseous O₂ is bubbled in an aqueous solution containing heme, Fe²⁺ is oxidized to Fe³⁺
 - Oxidation does not occur in myoglobin
 - Involves an O₂ bridge between Fe²⁺ ions

Myoglobin

- The Fe²⁺ ion is coordinated to four nitrogen atoms in the porphyrin of the heme and on nitrogen from the protein chain
 - This leaves a sixth coordination position (the W) available for an oxygen molecule

Role of Iron in the Transportation of Oxygen

- Hemoglobin: Molecule that contains four myoglobin-like units
 - Helps in the transportation of oxygen in the blood
 - Each hemoglobin contains two α chains and two β chains, each with a heme complex near the center
 - Can bind four oxygen molecules to form a bright red diamagnetic complex
 - When the oxygen molecule is released, water molecules occupy the sixth coordination position around each Fe²⁺

Figure 21.32 - A Representation of the Hemoglobin Structure

Copyright ©2017 Cengage Learning. All Rights Reserved.

Sickle Cell Anemia

- During protein synthesis for hemoglobin, an improper amino acid is inserted into the protein in two places
 - Due to the nonpolar nature of the incorrect amino acid, the hemoglobin drastically changes its shape

Effect of High Altitudes on Humans

• Reaction between hemoglobin and oxygen $Hb(aq) + 4O_2(g) \rightleftharpoons Hb(O_2)_4(aq)$

Hemoglobin

Oxyhemoglobin

- Oxygen content in high altitudes is low
 - Position of the equilibrium will shift to the left according to Le Châtelier's principle
 - Lower levels of oxyhemoglobin cause fatigue, dizziness, and high-altitude sickness

Effect of High Altitudes on Humans (Continued)

- The human body is capable of adapting to lower levels of oxygen by making more hemoglobin
 - Causes the equilibrium to shift back to the right
- High-altitude acclimatization
 - Effect of high altitude can be felt for a few weeks, but it disappears as hemoglobin levels in the body increase

Toxicity of Carbon Monoxide and the Cyanide Ion

- Carboxyhemoglobin: Stable complex of hemoglobin and carbon monoxide
 - Prevents normal oxygen uptake in the blood
 - Can result in asphyxiation
- Cyanide ion Respiratory inhibitor
 - Coordinates strongly to cytochrome oxidase, an ironcontaining cytochrome enzyme catalyst
 - Prevents the electron-transfer process, and rapid death results

Section 21.8 Metallurgy and Iron and Steel Production

Metallurgy

- Process of separating a metal from its ore and preparing it for use
- Steps
 - Mining
 - Pretreatment of the ore
 - Reduction to the free metal
 - Purification of the metal (refining)
 - Alloying

Extracting a Metal from Its Ore

- Ore is a mixture of minerals (pure metal compounds) and gangue (sand, clay, and rock)
- Ores must be treated to remove the gangue
 - Ores are pulverized and then processed in various devices
 - Cyclone separators
 - Inclined vibrating tables
 - Flotation tanks

Extracting a Metal from Its Ore (Continued 1)

- Flotation process: Method of separating the mineral particles in an ore from the gangue
 - Depends on the greater wettability of the mineral pieces
 - Crushed ore is fed into a tank with a mixture of water, oil, and detergent
 - A stream of air is blown through the mixture to skim the oilcovered pieces

Extracting a Metal from Its Ore (Continued 2)

- After ensuring that the mineral is concentrated, it is chemically altered for the reduction step
 - Carbonates and hydroxides can be converted by simple heating
 - Roasting: Sulfide minerals are converted to oxides by heating in air at temperatures below their melting points
 - Smelting: Reducing a metal ion to the free metal
 - Depends on the electron affinity of the metal ion

Zone Refining

- Process used for extracting highly pure metals
- Steps
 - A bar of impure metal travels through a heater
 - Causes the metal to melt and recrystallize as it cools
 - Purification of the metal
 - As the crystal re-forms, metal ions are more likely to fit better in the crystal lattice than are the atoms of impurities
 - Impurities are carried to the end of the bar

Section 21.8 Metallurgy and Iron and Steel Production

Figure 21.35 - Schematic Representation of Zone Refining

Pyrometallurgy

- Traditional metallurgical process that requires tremendous amounts of energy
- Drawbacks
 - Leads to atmospheric pollution
 - High costs make it economically unfeasible to treat low-grade ores

Hydrometallurgy

- Uses aqueous chemical solutions to extract metals from their ores through a process called leaching
- Uses
 - Extraction of gold from low-grade ores
 - Production of alumina (aluminum oxide) from bauxite

Extraction of Gold from Low-Grade Ores

- Cyanidation: Process that treats crushed ore with an aqueous cyanide solution in the presence of air
 - Dissolves gold by forming the complex ion Au(CN)₂⁻

 $4\mathrm{Au}\left(s\right) + 8\mathrm{CN}^{-}\left(aq\right) + \mathrm{O}_{2}\left(g\right) + 2\mathrm{H}_{2}\mathrm{O}\left(l\right) \rightarrow 4\mathrm{Au}\left(\mathrm{CN}\right)_{2}^{-}\left(aq\right) + 4\mathrm{OH}^{-}\left(aq\right)$

Pure gold is then recovered by reaction of the Au(CN)₂⁻ solution with zinc powder to reduce Au⁺ to Au

$$2\operatorname{Au}(\operatorname{CN})_{2}^{-}(aq) + \operatorname{Zn}(s) \rightarrow 2\operatorname{Au}(s) + \operatorname{Zn}(\operatorname{CN})_{4}^{2-}(aq)$$

Extraction of Alumina from Bauxite

- Conducted using the Bayer process
 - The ore is leached with sodium hydroxide at high temperatures and pressures to dissolve the amphoteric aluminum oxide

 $Al_2O_3(s) + 2OH^-(aq) \rightarrow 2AlO_2^-(aq) + H_2O(l)$

 Leaves behind solid impurities such as SiO₂, Fe₂O₃, and TiO₂

Extraction of Alumina from Bauxite (Continued)

- After the impurities are removed, the pH of the solution is lowered, and pure aluminum oxide is formed
- The product is electrolyzed to produce aluminum metal

Steps in Hydrometallurgy

- Selective leaching of a metal from its ore
 - Leaching agent
 - Can be water if the metal-containing compound is a watersoluble chloride or sulfate
 - If the metal is present in a water-insoluble substance, aqueous solutions containing acids, bases, oxidizing agents, and salts are used
- Recovering the metal ion from the solution by selective precipitation as an ionic compound

Section 21.8 Metallurgy and Iron and Steel Production

Metallurgy of Iron

- Iron is found in the earth's crust in many minerals
 - Iron pyrite (FeS₂)
 - Siderite (FeCO₃)
 - Hematite (Fe₂O₃)
 - Magnetite (FeO · Fe₂O₃)
 - Taconite ores

Iron is reduced in a blast furnace

Section 21.8 Metallurgy and Iron and Steel Production

Metallurgy of Iron - Terms

- Slag: Molten calcium silicate and alumina
 - Product of the reaction between CaCO₃ that loses CO₂ in the blast furnace and combines with silica and other impurities

 $CaO + SiO_2 \rightarrow CaSiO_3$

Pig iron: Impure iron that is collected from the blast furnace

Section 21.8 Metallurgy and Iron and Steel Production

Production of Steel

- Steel is an alloy
- Can be classified as:
 - Carbon steel: Contains approximately 1.5% carbon
 - Alloy steel: Contains carbon and Cr, Co, Mn, or Mo
- Iron is converted to steel by an oxidation process that eliminates unwanted impurities
 - Open hearth process
 - Basic oxygen process

Oxidation Reactions of Steelmaking

- Manganese, phosphorus, and silicon in the impure iron react with oxygen to form oxides
 - Oxides react with fluxes to form slag
 - Choice of flux depends on the major impurities present

Acidic flux: MnO(s) + SiO₂(s) $\xrightarrow{\text{Heat}}$ MnSiO₃(l) Basic flux: SiO₂(s) + MgO(s) $\xrightarrow{\text{Heat}}$ MgSiO₃(l) P₄O₁₀(s) + 6CaO(s) $\xrightarrow{\text{Heat}}$ 2Ca₃(PO₄)₂(l) Section 21.8 Metallurgy and Iron and Steel Production

Figure 21.37 - Schematic Diagram of the Open Hearth Process for Steelmaking

Metallurgy and Iron and Steel Production

Basic Oxygen Process for Steelmaking

Faster method

Section 21.8

- Exothermic oxidation reactions proceed rapidly
 - Produce enough heat to raise the temperature nearly to the boiling point of iron without an external heat source

Molten metal

Electric Arc Method of Steel Making

- An electric arc between carbon electrodes is used to melt the charge
 - No fuel-borne impurities are added to the steel, since no fuel is needed
- Higher temperatures lead to more effective removal of sulfur and phosphorus impurities
- Oxygen is added in the process
 - Helps control oxide impurities in the steel effectively

Heat Treatment of Steel

- Pure iron exists in two crystalline forms based on the temperature
 - α-iron Body-centered cubic structure of iron when the temperature is less than 912° C
 - Austentite or γ-iron Iron has a face-centered cubic structure when temperature is between 912° C and 1394° C
 - δ -iron Body-centered cubic structure identical to α -iron at 1394° C

Alloying Iron with Carbon

- Forms the interstitial alloy carbon steel
- The temperature at which α-iron is converted to austentite falls by 200°C
 - At high temperatures, iron and carbon can react to form cementite, an iron carbide

$$3\text{Fe} + \text{C} + \text{energy} \rightleftharpoons \text{Fe}_3\text{C}$$

Heat

Cementite

 Thus, steel is a mixture of iron metal in one of its crystal forms, carbon, and cementite

Alloying Iron with Carbon (Continued 1)

- Much of the carbon is converted to cementite when steel is heated to 1000°C
 - The equilibrium shifts to the left if the steel is allowed to cool slowly
 - Small crystals of carbon precipitate
 - The equilibrium does not have time to adjust if the cooling is rapid
 - The cementite is trapped, and the steel has a high cementite content

Alloying Iron with Carbon (Continued 2)

- Tempering: Heating a mixture to intermediate temperatures followed by a rapid cooling process
 - Used for fine-tuning the proportions of carbon crystals and cementite in steel to give the desired properties