

Chapter 14

Acids and Bases

Chapter 14 *Table of Contents*

- (14.1) The nature of acids and bases
- (14.2) Acid strength
- (14.3) The pH scale
- (14.4) Calculating the pH of strong acid solutions
- (14.5) Calculating the pH of weak acid solutions
- (14.6) Bases
- (14.7) Polyprotic acids

Chapter 14 *Table of Contents*

- (14.8) Acid–base properties of salts
- (14.9) The effect of structure on acid—base properties
- (14.10) Acid—base properties of oxides
- (14.11) The Lewis acid–base model
- (14.12) Strategy for solving acid—base problems: A summary

Nature of Acids and Bases

- Arrhenius concept: Acids produce hydrogen ions in aqueous solution, and bases produce hydroxide ions
 - Limited application
- Brønsted–Lowry model: Acids are proton (H⁺) donors, and bases are proton acceptors

Acid in Water

Gaseous HCl dissolves in water by the following reaction:

- The proton is transferred from the HCl molecule to the water molecule
 - Leads to the formation of hydronium ion, H₃O⁺

Acid in Water - General Reaction

Reaction

HA(aq)	$+ H_2O(l)$	$\square H_3O^+(aq)$	$+ A^{-}(aq)$
Acid	Base	Conjugate	Conjugate
		acid	base

- Conjugate base: Remains of an acid molecule after it loses a proton
- Conjugate acid: Formed when a proton is transferred to a base
- Conjugate acid—base pair: Two substances related to each other by accepting and donating a single proton Copyright ©2017 Cengage Learning. All Rights Reserved.

Acid in Water - General Reaction (Continued)

Equilibrium expression

$$K_{a} = \frac{\left[H_{3}O^{+}\right]\left[A^{-}\right]}{\left[HA\right]} = \frac{\left[H^{+}\right]\left[A^{-}\right]}{\left[HA\right]}$$

- K_a is the acid dissociation constant
- Water can be omitted from the acid dissociation reaction
 - Does not affect the equilibrium position

Interactive Example 14.1 - Acid Dissociation (Ionization) Reactions

- Write the simple dissociation (ionization) reaction (omitting water) for each of the following acids:
 - a. Hydrochloric acid (HCl)
 - b. Acetic acid $(HC_2H_3O_2)$
 - c. The anilinium ion $(C_6H_5NH_3^+)$
 - d. The hydrated aluminum(III) ion $[Al(H_2O)_6]^{3+}$

Interactive Example 14.1 - Solution

- a. $HCl(aq) \square \square H^+(aq) + Cl^-(aq)$
- **b.** $HC_2H_3O_2(aq) \square \square H^+(aq) + C_2H_3O_2^-(aq)$

C. $C_6H_5NH_3^+(aq)$ $H^+(aq) + C_6H_5NH_2(aq)$

Interactive Example 14.1 - Solution (Continued)

- d. Although this formula looks complicated, writing the reaction is simple if you concentrate on the meaning of K_a
 - Removing a proton, which can come only from one of the water molecules, leaves one OH⁻ and five H₂O molecules attached to the Al³⁺ ion
 - So the reaction is

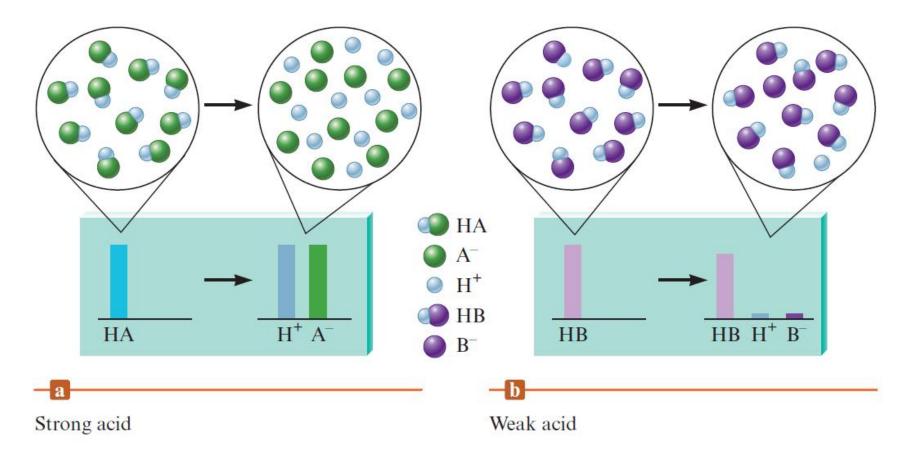
 $\mathrm{Al}(\mathrm{H}_{2}\mathrm{O})_{6}^{3+}(aq) \Box \Box H^{+}(aq) + \mathrm{Al}(\mathrm{H}_{2}\mathrm{O})_{5} \mathrm{OH}^{2+}(aq)$

Brønsted–Lowry Model

- Can be extended to reactions in the gas phase
- When HCl and NH₃ diffuse, HCl donates a proton to NH₃

$NH_3(g) + HCl(g) \square \square NH_4Cl(s)$

Strength of an Acid


 Defined by the equilibrium position of the acid's ionization reaction

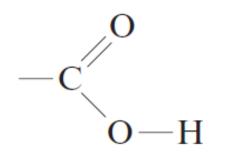
$$\begin{array}{ll} \mathrm{HA}(aq) + \mathrm{H}_{2}\mathrm{O}(l) & \textcircled{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{A}^{-}(aq) \\ \mathrm{Acid} & \mathrm{Conjugate\ base} \end{array}$$

- Strong acid: Equilibrium lies far to the right
 - Yields a weak conjugate base
- Weak acid: Equilibrium lies far to the left
 - Weaker the acid, stronger its conjugate base

Figure 14.4 - Strong and Weak Acids

Table 14.1 - Various Ways to Describe Acid Strength

Property	Strong Acid	Weak Acid
<i>K</i> _a value Position of the dissociation (ionization) equilibrium	<i>K</i> _a is large Far to the right	<i>K</i> _a is small Far to the left
Equilibrium concentration of [H ⁺] compared with original concentration of HA	$[H^+] \approx [HA]_0$	[H ⁺] ≪ [HA] ₀
Strength of conjugate base compared with that of water	A [−] much weaker base than H ₂ O	A [−] much stronger base than H ₂ O


Types of Acids

- Diprotic acids: Composed of two acidic protons
 - Completely dissociate in water
 - Example Sulfuric acid [H₂SO₄ (aq)]
- Oxyacids: Acidic proton is attached to an oxygen atom
 - Examples Nitric acid [HNO₃(aq)] and phosphoric acid (H₃PO₄)

Types of Acids (Continued 1)

- Organic acids: Contain a carbon atom backbone
 - Contain the carboxyl group

- Generally weak in nature
- Examples Acetic acid (CH₃COOH) and benzoic acid (C₆H₅COOH)

Types of Acids (Continued 2)

- Hydrohalic acids (HX)
 - Acidic proton is attached to an atom other than oxygen
 - X Halogen atom

Monoprotic acids: Contain one acidic proton

 Examples - Hydrogen sulfate ion (HSO₄⁻) and phenol (HOC₆H₅)

Critical Thinking

- Vinegar contains acetic acid and is used in salad dressings
 - What if acetic acid was a strong acid instead of a weak acid?
 - Would it be safe to use vinegar as a salad dressing?

Table 14.2 - Values of K_a for Some CommonMonoprotic Acids

Formula	Name	Value of K_a^*	
HSO_{4}^{-} $HCIO_{2}$ $HC_{2}H_{2}CIO_{2}$ HF HNO_{2} $HC_{2}H_{3}O_{2}$ $[AI(H_{2}O)_{6}]^{3+}$ $HOCI$ HCN NH_{4}^{+} $HOC_{6}H_{5}$	Hydrogen sulfate ion Chlorous acid Monochloracetic acid Hydrofluoric acid Nitrous acid Acetic acid Hydrated aluminum(III) ion Hypochlorous acid Hydrocyanic acid Ammonium ion Phenol	$\begin{array}{c} 1.2 \times 10^{-2} \\ 1.2 \times 10^{-2} \\ 1.35 \times 10^{-3} \\ 7.2 \times 10^{-4} \\ 4.0 \times 10^{-4} \\ 1.8 \times 10^{-5} \\ 1.4 \times 10^{-5} \\ 3.5 \times 10^{-8} \\ 6.2 \times 10^{-10} \\ 5.6 \times 10^{-10} \\ 1.6 \times 10^{-10} \end{array}$	→ Increasing acid strength

*The units of K_a are customarily omitted.

Interactive Example 14.2 - Relative Base Strength

- Using Table 14.2, arrange the following species according to their strengths as bases:
 - H₂O, F⁻, Cl⁻, NO₂⁻, and CN⁻

Interactive Example 14.2 - Solution

 Remember that water is a stronger base than the conjugate base of a strong acid but a weaker base than the conjugate base of a weak acid, which leads to the following order:

 $Cl^- < H_2O < conjugate bases of weak acids$

Weakest bases — Strongest bases

Interactive Example 14.2 - Solution (Continued 1)

- We can order the remaining conjugate bases by recognizing that the strength of an acid is inversely related to the strength of its conjugate base
 - From the table, we have

 K_a for HF > K_a for HNO₂ > K_a for HCN

Interactive Example 14.2 - Solution (Continued 2)

The base strengths increase as follows:

 $F^{-} < NO_{2}^{-} < CN^{-}$

• The combined order of increasing base strength is $Cl^- < H_2O < F^- < NO_2^- < CN^-$

Water as an Acid and a Base

- Water is an amphoteric substance
 - Amphoteric: Substance that behaves either as an acid or as a base
 - Depicted in the autoionization of water
 - Autoionization: Transfer of a proton from one water molecule to another to produce a hydroxide ion and a hydronium ion
 - One water molecule acts as an acid by furnishing a proton, and the other acts as a base by accepting the proton

Autoionization Reaction for Water

 $2H_2O(l)$ $H_3O^+(aq) + OH^-(aq)$

Equilibrium expression

$$K_{\rm w} = \left[{\rm H}_3 {\rm O}^+ \right] \left[{\rm O} {\rm H}^- \right] = \left[{\rm H}^+ \right] \left[{\rm O} {\rm H}^- \right]$$

 Ion-product constant (K_w) (or the dissociation constant for water) always refers to the autoionization of water

Ion-Product Constant (K_w)

 No matter what the solution contains, the product of [H⁺] and [OH⁻] must always equal 1.0 × 10⁻¹⁴ at 25° C

$$K_{w} = \left[H^{+}\right]\left[OH^{-}\right] = \left(1.0 \times 10^{-7}\right)\left(1.0 \times 10^{-7}\right)$$
$$= 1.0 \times 10^{-14}$$

Temperature dependent

Possible Situations of K_w

- [H⁺] = [OH⁻]
 - Neutral solution
- [H⁺] > [OH⁻]
 - Acidic solution
- [OH⁻] > [H⁺]
 - Basic solution

Example 14.4 - Autoionization of Water

- At 60° C, the value of $K_{\rm w}$ is 1×10^{-13}
 - a. Using Le Châtelier's principle, predict whether the following reaction is exothermic or endothermic:

 $2H_2O(l)$ $H_3O^+(aq) + OH^-(aq)$

 b. Calculate [H⁺] and [OH⁻] in a neutral solution at 60°C

Example 14.4 - Solution (a)

- K_w increases from 1 × 10⁻¹⁴ at 25° C to 1 × 10⁻¹³ at 60° C
 - Le Châtelier's principle states that if a system at equilibrium is heated, it will adjust to consume energy
 - Since the value of K_w increases with temperature, we must think of energy as a reactant, and so the process must be endothermic

Example 14.4 - Solution (b)

• At 60° C,

$$\left[H^{+}\right]\left[OH^{-}\right] = 1 \times 10^{-13}$$

For a neutral solution,

$$[H^+] = [OH^-] = \sqrt{1 \times 10^{-13}} = 3 \times 10^{-7} M$$

pH Scale

- Helps represent solution acidity
- Log scale based on 10, where

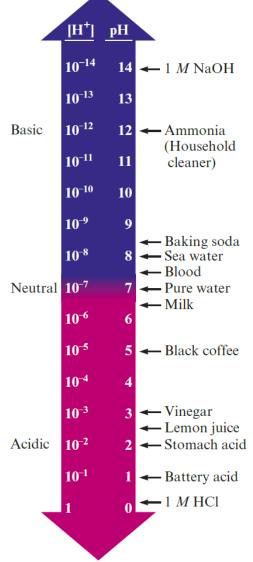
 $pH = -log[H^+]$

- pH decreases as [H⁺] increases
- For a solution where $[H^+] = 1.0 \times 10^{-7} M$

Significant Figures

 Number of decimal places in the log is equal to the number of significant figures in the original number
 2 significant figures

2 decimal places


Log Scales

- pOH = -log [OH⁻]
- $pK = -\log K$

PH is a log scale based on 10

 pH changes by 1 for every power of 10 change in [H⁺]

pH Meter

- Electronic device with a probe that can be inserted into a solution of an unknown pH
 - Probe contains an acidic aqueous solution enclosed by a special glass membrane that permits migration of H⁺ ions
- Electric potential results if the unknown solution has a different pH from the solution in the probe

Figure 14.7 - pH Meter

Critical Thinking

- What if you lived on a planet identical to the earth but for which room temperature was 50° C?
 - How would the pH scale be different?

Interactive Example 14.5 - Calculating pH and pOH

- Calculate pH and pOH for each of the following solutions at 25° C
 - a. $1.0 \times 10^{-3} M \text{ OH}^{-1}$
 - b. 1.0 *M* OH⁻

Interactive Example 14.5 - Solution (a)

$$\begin{bmatrix} H^{+} \end{bmatrix} = \frac{K_{w}}{\begin{bmatrix} OH^{-} \end{bmatrix}} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-3}} = 1.0 \times 10^{-11} M$$
$$pH = -\log \begin{bmatrix} H^{+} \end{bmatrix} = -\log (1.0 \times 10^{-11}) = 11.00$$
$$pOH = -\log \begin{bmatrix} OH^{-} \end{bmatrix} = -\log (1.0 \times 10^{-3}) = 3.00$$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 14.5 - Solution (b)

$$\begin{bmatrix} OH^{-} \end{bmatrix} = \frac{K_{w}}{\begin{bmatrix} H^{+} \end{bmatrix}} = \frac{1.0 \times 10^{-14}}{1.0} = 1.0 \times 10^{-14} M$$
$$pH = -\log \begin{bmatrix} H^{+} \end{bmatrix} = -\log (1.0) = 0.00$$
$$pOH = -\log \begin{bmatrix} OH^{-} \end{bmatrix} = -\log (1.0 \times 10^{-14}) = 14.00$$

Copyright ©2017 Cengage Learning. All Rights Reserved.

pH and pOH

- Consider the log of the expression $K_{w} = [H^+][OH^-]$ $\log K_{w} = \log[H^{+}] + \log[OH^{-}]$ or $-\log K_{w} = -\log[H^{+}] - \log[OH^{-}]$ $pK_w = pH + pOH$ Since $K_{\rm w} = 1.0 \times 10^{-14}$, $pK_{\rm w} = -\log(1.0 \times 10^{-14}) = 14.00$
 - Thus, for any solution at 25° C, pH + pOH = 14.00

Interactive Example 14.6 - Calculations Using pH

- The pH of a sample of human blood was measured to be 7.41 at 25° C
 - Calculate pOH, [H⁺], and [OH⁻] for the sample

Interactive Example 14.6 - Solution

- Since pH + pOH = 14.00,
 pOH = 14.00 pH = 14.00 7.41 = 6.59
- To find [H⁺] we must go back to the definition of pH, which is pH = -log[H⁺]
 - Thus, $7.41 = -\log[H^+]$ or $\log[H^+] = -7.41$

Interactive Example 14.6 - Solution (Continued 1)

- We need to know the antilog of -7.41
 - Taking the antilog is the same as exponentiation antilog (n) = 10ⁿ
 - Since $pH = -log[H^+]$,

 $-pH = log[H^+]$

[H⁺] can be calculated by taking the antilog of –pH

 $[H^+] = antilog (-pH)$

Interactive Example 14.6 - Solution (Continued 2)

- In the present case,
 [H⁺] = antilog (-pH) = antilog (-7.41) = 10^{-7.41}
 [H⁺] = 3.9 × 10⁻⁸ M
- Similarly,

```
[OH^{-}] = antilog (-pOH),
```

And

```
[OH^{-}] = antilog (-6.59) = 10^{-6.59} = 2.6 \times 10^{-7} M
```


Exercise

Fill in the missing information in the following table:

	pН	рОН	[H+]	[OH-]	Acidic, Basic, or Neutral?
Solution a	6.88	7.12	$1.3 \times 10^{-7} M$	7.6 × 10 ^{−8} M	acidic
Solution b	0.92	13.08	0.12 <i>M</i>	$8.4 imes 10^{-14} M$	acidic
Solution c	<u>10.89</u>	3.11	$1.3 \times 10^{-11} M$	$7.8 \times 10^{-4} M$	basic
Solution d	7.00	7.00	$1.0 \times 10^{-7} M$	1.0 × 10 ⁻⁷ M	neutral

Copyright ©2017 Cengage Learning. All Rights Reserved.

Solving for pH

- Focus on the solution components and their chemistry
- Determine the significant components
 - List the major species, and focus on those that furnish H⁺ ions
 - Major species: Solution components that are available in large amounts

Section 14.4 Calculating the pH of Strong Acid Solutions

Interactive Example 14.7 - pH of Strong Acids

- a. Calculate the pH of 0.10 M HNO₃
- b. Calculate the pH of $1.0 \times 10^{-10} M$ HCl

Interactive Example 14.7 - Solution (a)

- Since HNO₃ is a strong acid, the major species in solution are H⁺, NO₃⁻, and H₂O
- The concentration of HNO₃ is virtually zero, since the acid completely dissociates in water
 - Also, [OH⁻] will be very small because the H⁺ ions from the acid will drive the equilibrium to the left

$$H_2O(l)$$
 $H^+(aq) + OH^-(aq)$

Interactive Example 14.7 - Solution (a) (Continued 1)

- This is an acidic solution where [H⁺] >> [OH⁻], so
 [OH⁻] << 10⁻⁷ M and the sources of H⁺ are:
 - H⁺ from HNO₃ (0.10 *M*)
 - H⁺ from H₂O
 - The number of H⁺ ions contributed by the autoionization of water will be very small compared with the 0.10 *M* contributed by the HNO₃ and can be neglected

Interactive Example 14.7 - Solution (a) (Continued 2)

Since the dissolved HNO₃ is the only important source of H⁺ ions in this solution,

 $[H^+] = 0.10 M$ and pH = -log(0.10) = 1.00

Interactive Example 14.7 - Solution (b)

- Normally, in an aqueous solution of HCl the major species are H⁺, Cl⁻, and H₂O
 - However, in this case the amount of HCl in solution is so small that it has no effect
 - The only major species is H₂O
 - Thus, the pH will be that of pure water, or pH = 7.00

Problem-Solving Strategy - Solving Weak Acid Equilibrium Problems

- 1. List the major species in the solution
- 2. Choose the species that can produce H⁺
 - Write balanced equations for the reactions producing H⁺
- Using the values of the equilibrium constants for the reactions, decide which equilibrium will dominate in producing H⁺

Problem-Solving Strategy - Solving Weak Acid Equilibrium Problems (Continued 1)

- 4. Write the equilibrium expression for the dominant equilibrium
- 5. List the initial concentrations of the species participating in the dominant equilibrium
- 6. Define the change needed to achieve equilibrium
 - Define x
- 7. Write the equilibrium concentrations in terms of

Problem-Solving Strategy - Solving Weak Acid Equilibrium Problems (Continued 2)

- 8. Substitute the equilibrium concentrations into the equilibrium expression
- 9. Solve for *x* the easy way
 - Assume that $[HA]_0 x \approx [HA]_0$
- 10.Use the 5% rule to verify whether the approximation is valid
- 11.Calculate [H⁺] and pH

Critical Thinking

- Consider two aqueous solutions of different weak acids, HA and HB
 - What if all you know about the two acids is that the K_a value for HA is greater than that for HB?
 - Can you tell which of the acids is stronger than the other?
 - Can you tell which of the acid solutions has the lower pH?
 - Defend your answers

Interactive Example 14.8 - The pH of Weak Acids

- The hypochlorite ion (OCI⁻) is a strong oxidizing agent often found in household bleaches and disinfectants
 - It is also the active ingredient that forms when swimming-pool water is treated with chlorine
 - In addition to its oxidizing abilities, the hypochlorite ion has a relatively high affinity for protons (it is a much stronger base than Cl⁻, for example)

Interactive Example 14.8 - The pH of Weak Acids (Continued)

- It also forms the weakly acidic hypochlorous acid (HOCl, $K_a = 3.5 \times 10^{-8}$)
- Calculate the pH of a 0.100-M aqueous solution of hypochlorous acid

Interactive Example 14.8 - Solution

- 1. We list the major species
 - Since HOCl is a weak acid and remains mostly undissociated, the major species in a 0.100-M HOCl solution are HOCl and H₂O
- 2. Both species can produce H⁺

 $\operatorname{HOCl}(aq) \boxminus \stackrel{\square}{\boxplus} \operatorname{H}^{+}(aq) + \operatorname{OCl}^{-}(aq) \quad K_{a} = 3.5 \times 10^{-8}$ $\operatorname{H}_{2}\operatorname{O}(l) \boxminus \stackrel{\square}{\boxplus} \operatorname{H}^{+}(aq) + \operatorname{OH}^{-}(aq) \quad K_{w} = 1.0 \times 10^{-14}$

Interactive Example 14.8 - Solution (Continued 1)

- 3. Since HOCl is a significantly stronger acid than H_2O , it will dominate in the production of H⁺
- 4. We therefore use the following equilibrium expression:

$$K_{a} = 3.5 \times 10^{-8} = \frac{\left[\text{H}^{+}\right]\left[\text{OCl}^{-}\right]}{\left[\text{HOCl}\right]}$$

Interactive Example 14.8 - Solution (Continued 2)

5. The initial concentrations appropriate for this equilibrium are

$$\begin{split} & [HOC1]_0 = 0.100 \; M \\ & [OC1^-]_0 = 0 \\ & [H^+]_0 \approx 0 \quad \mbox{(We neglect the contribution from H_2O)} \end{split}$$

Interactive Example 14.8 - Solution (Continued 3)

- Since the system will reach equilibrium by the dissociation of HOCl, let x be the amount of HOCl (in mol/L) that dissociates in reaching equilibrium
- 7. The equilibrium concentrations in terms of x are $[HOC1] = [HOC1]_0 - x = 0.100 - x$ $[OC1^-] = [OC1^-]_0 + x = 0 + x = x$ $[H^+] = [H^+]_0 + x \approx 0 + x = x$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 14.8 - Solution (Continued 4)

8. Substituting these concentrations into the equilibrium expression gives

$$K_{\rm a} = 3.5 \times 10^{-8} = \frac{(x)(x)}{0.100 - x}$$

- Since K_a is so small, we can expect a small value for x
 - Thus, we make the approximation $[HA]_0 x \approx [HA]_0$, or $0.100 - x \approx 0.100$

Interactive Example 14.8 - Solution (Continued 5)

This leads to the following expression:

$$K_{\rm a} = 3.5 \times 10^{-8} = \frac{x^2}{0.100 - x} \approx \frac{x^2}{0.100}$$

Solving for x gives

 $x = 5.9 \times 10^{-5}$

10.The approximation $0.100-x\approx 0.100$ must be validated

Interactive Example 14.8 - Solution (Continued 6)

To do this, we compare x to [HOCl]₀:

$$\frac{x}{[\text{HA}]_0} \times 100 = \frac{x}{[\text{HOC1}]_0} \times 100 = \frac{5.9 \times 10^{-5}}{0.100} \times 100 = 0.059\%$$

 Since this value is much less than 5%, the approximation is considered valid

11.We calculate [H⁺] and pH [H⁺] = $x = 5.9 \times 10^{-5} M$ and pH = 4.23

Exercise

- What are the major species present in 0.250 M solutions of each of the following acids?
 - Calculate the pH of each of these solutions
 - a. HNO_2 Major species HNO_2 and H_2O pH = 2.00
 - b. $CH_3CO_2H(HC_2H_3O_2)$

Major species - $HC_2H_3O_2$ and H_2O_2 pH = 2.68

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 14.9 - The pH of Weak Acid Mixtures

- Calculate the pH of a solution that contains 1.00
 M HCN ($K_a = 6.2 \times 10^{-10}$) and 5.00 M HNO₂ ($K_a = 4.0 \times 10^{-4}$)
 - Also calculate the concentration of cyanide ion (CN⁻) in this solution at equilibrium

Interactive Example 14.9 - Solution

- Since HCN and HNO₂ are both weak acids and are largely undissociated, the major species in the solution are HCN, HNO₂, and H₂O
 - All three of these components produce H⁺

 $\text{HCN}(aq) = \bigoplus H^{+}(aq) + \text{CN}^{-}(aq) \qquad K_{a} = 6.2 \times 10^{-10}$ $\text{HNO}_{2}(aq) = \bigoplus H^{+}(aq) + \text{NO}_{2}^{-}(aq) \qquad K_{a} = 4.0 \times 10^{-4}$ $\text{H}_{2}\text{O}(l) = \bigoplus H^{+}(aq) + \text{OH}^{-}(aq) \qquad K_{w} = 1.0 \times 10^{-14}$

Interactive Example 14.9 - Solution (Continued 1)

- A mixture of three acids might lead to a very complicated problem
 - However, the situation is greatly simplified by the fact that even though HNO₂ is a weak acid, it is much stronger than the other two acids present (as revealed by the *K* values)
 - Thus, HNO₂ can be assumed to be the dominant producer of H⁺, and we will focus on its equilibrium expression

Calculating the pH of Weak Acid Solutions

Section 14.5

Interactive Example 14.9 - Solution (Continued 2)

$$K_{a} = 4.0 \times 10^{-4} = \frac{\left[\text{H}^{+}\right]\left[\text{NO}_{2}^{-}\right]}{\left[\text{HNO}_{2}\right]}$$

The initial concentrations, the definition of x, and the equilibrium concentrations are as follows:

Initial		Equilibrium		
Concentration (mol/L)		Concentration (mol/L)		
$[HNO_2]_0 = 5.00$ $[NO_2^-]_0 = 0$ $[H^+]_0 \approx 0$	$\xrightarrow{x \text{ mol/L HNO}_2}_{\text{dissociates}}$	$[HNO_2] = 5.00 - x$ $[NO_2^-] = x$ $[H^+] = x$		

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 14.9 - Solution (Continued 3)

 It is convenient to represent these concentrations in the following shorthand form (called an ICE table):

	HNO ₂ (aq)	<u> </u>	$H^+(aq)$	+	$NO_2^{-}(aq)$
Initial	5.00		0		0
Change	-x		+x		+x
Equilibrium	5.00 - x		X		X

Substitute the equilibrium concentrations in the equilibrium expression

Interactive Example 14.9 - Solution (Continued 4)

- Make the approximation that 5.00 x = 5.00 $K_a = 4.0 \times 10^{-4} = \frac{(x)(x)}{5.00 - x} \approx \frac{x^2}{5.00}$
 - We solve for *x*:

 $x = 4.5 \times 10^{-2}$

Using the 5% rule, we show that the approximation is valid

$$\frac{x}{[\text{HNO}_2]_0} \times 100 = \frac{4.5 \times 10^{-2}}{5.00} \times 100 = 0.90\%$$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 14.9 - Solution (Continued 5)

Therefore,

 $[H^+] = x = 4.5 \times 10^{-2} M \text{ and } pH = 1.35$

- We also want to calculate the equilibrium concentration of cyanide ion in this solution
 - The CN⁻ ions in this solution come from the dissociation of HCN

$$\operatorname{HCN}(aq)$$
 \square $\operatorname{H}^{+}(aq) + \operatorname{CN}^{-}(aq)$

Interactive Example 14.9 - Solution (Continued 6)

- Although the position of this equilibrium lies far to the left and does not contribute significantly to [H⁺], HCN is the only source of CN⁻
 - Thus, we must consider the extent of the dissociation of HCN to calculate [CN⁻]
- The equilibrium expression for the preceding reaction is

$$K_{\rm a} = 6.2 \times 10^{-10} = \frac{\left[\mathrm{H}^+\right]\left[\mathrm{CN}^-\right]}{\left[\mathrm{HCN}\right]}$$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 14.9 - Solution (Continued 7)

- We know [H⁺] for this solution from the results of the first part of the problem
 - It is important to understand that there is only one kind of H⁺ in this solution
- It does not matter from which acid the H⁺ ions originate
 - The equilibrium [H⁺] we need to insert into the HCN equilibrium expression is 4.5 × 10⁻² M, even though the H⁺ was contributed almost entirely from the dissociation of HNO₂

Interactive Example 14.9 - Solution (Continued 8)

- What is [HCN] at equilibrium?
 - We know [HCN]₀ = 1.00 *M*, and since K_a for HCN is so small, a negligible amount of HCN will dissociate
 - Thus,

 $[\text{HCN}] = [\text{HCN}]_0 - \text{amount of HCN dissociated} \approx [\text{HCN}]_0 = 1.00 M$

Interactive Example 14.9 - Solution (Continued 9)

 Since [H⁺] and [HCN] are known, we can find [CN⁻] from the equilibrium expression:

$$K_{a} = 6.2 \times 10^{-10} = \frac{\left[H^{+}\right]\left[CN^{-}\right]}{\left[HCN\right]} = \frac{\left(4.5 \times 10^{-2}\right)\left[CN^{-}\right]}{1.00}$$
$$\left[CN^{-}\right] = \frac{\left(6.2 \times 10^{-10}\right)\left(1.00\right)}{4.5 \times 10^{-2}} = 1.4 \times 10^{-8}M$$

Interactive Example 14.9 - Solution (Continued 10)

- Note the significance of this result
 - Since [CN⁻] = 1.4 × 10⁻⁸ M and HCN is the only source of CN⁻, this means that only 1.4 × 10⁻⁸ mol/L of HCN dissociated
 - This is a very small amount compared with the initial concentration of HCN, which is exactly what we would expect from its very small K_a value, and [HCN] = 1.00 M as assumed

Percent Dissociation

Definition

Percent dissociation = $\frac{\text{amount dissociated (mol/L)}}{\text{initial concentration (mol/L)}} \times 100\%$

- For a solution of any weak acid HA:
 - [H⁺] decreases as [HA]₀ decreases
 - Percent dissociation increases as [HA]₀ decreases

Interactive Example 14.10 - Calculating Percent Dissociation

Calculate the percent dissociation of acetic acid $(K_a = 1.8 \times 10^{-5}) \text{ in } 1.00 \text{ M of } HC_2H_3O_2$

Interactive Example 14.10 - Solution

- Since acetic acid is a weak acid, the major species in this solution are HC₂H₃O₂ and H₂O
 - Both species are weak acids, but acetic acid is a much stronger acid than water
 - Thus, the dominant equilibrium will be $HC_2H_3O_2(aq) \Box \Box H^+(aq) + C_2H_3O_2^-(aq)$
 - The equilibrium expression is

$$K_{\rm a} = 1.8 \times 10^{-5} = \frac{\left[{\rm H}^+ \right] \left[{\rm C}_2 {\rm H}_3 {\rm O}_2^- \right]}{\left[{\rm H} {\rm C}_2 {\rm H}_3 {\rm O}_2 \right]}$$

Interactive Example 14.10 - Solution (Continued 1)

The initial concentrations, definition of x, and equilibrium concentrations are:

	$HC_2H_3O_2(aq)$	${\longleftarrow}$	$H^+(aq)$	+	$C_2H_3O_2^-(aq)$
Initial	1.00		0		0
Change	- <i>x</i>		X		Х
<mark>E</mark> quilibrium	1.00 - x		X		X

 Insert the equilibrium concentrations into the equilibrium expression and make the usual approximation that x is small compared with [HA]₀

Interactive Example 14.10 - Solution (Continued 2)

$$K_{\rm a} = 1.8 \times 10^{-5} = \frac{\left[\mathrm{H}^{+}\right] \left[\mathrm{C}_{2}\mathrm{H}_{3}\mathrm{O}_{2}^{-}\right]}{\left[\mathrm{H}\mathrm{C}_{2}\mathrm{H}_{3}\mathrm{O}_{2}\right]} = \frac{(x)(x)}{1.00 - x} \approx \frac{x^{2}}{1.00}$$

Thus,

$$x^2 \approx 1.8 imes 10^{-5}$$
 and $x \approx 4.2 imes 10^{-3}$

• The approximation $1.00 - x \approx 1.00$ is valid by the 5% rule, so

$$[H^+] = x = 4.2 \times 10^{-3} M$$

Interactive Example 14.10 - Solution (Continued 3)

The percent dissociation is

$$\frac{\left[\mathrm{H}^{+} \right]}{\left[\mathrm{HC}_{2}\mathrm{H}_{3}\mathrm{O}_{2} \right]_{0}} \times 100 = \frac{4.2 \times 10^{-3}}{1.00} \times 100\% = 0.42\%$$

Exercise

 Use Le Châtelier's principle to explain why percent dissociation increases as the concentration of a weak acid decreases

Dilution shifts equilibrium to the side with the greater number of particles (% dissociation increases)

Interactive Example 14.11 - Calculating K_a from Percent Dissociation

- Lactic acid (HC₃H₅O₃) is a chemical that accumulates in muscle tissue during exertion
 - In a 0.100-M aqueous solution, lactic acid is 3.7% dissociated
 - Calculate the value of K_a for this acid

Interactive Example 14.11 - Solution

- From the small value for the percent dissociation, it is clear that HC₃H₅O₃ is a weak acid
 - Thus, the major species in the solution are the undissociated acid and water

 $HC_3H_5O_3$ and H_2O

 However, even though HC₃H₅O₃ is a weak acid, it is a much stronger acid than water and will be the dominant source of H⁺ in the solution

Interactive Example 14.11 - Solution (Continued 1)

- The dissociation reaction is $HC_{3}H_{5}O_{3}(aq) \square \square H^{+}(aq) + C_{3}H_{5}O_{3}^{-}(aq)$
- The equilibrium expression is

$$K_{a} = \frac{\left[H^{+}\right]\left[C_{3}H_{5}O_{3}^{-}\right]}{\left[HC_{3}H_{5}O_{3}\right]}$$

Interactive Example 14.11 - Solution (Continued 2)

The initial and equilibrium concentrations are as follows:

Initial Concentration (mol/L)	Equilibrium Concentration (mol/L)		
$[HC_{3}H_{5}O_{3}]_{0} = 0.10$ $[C_{3}H_{5}O_{3}^{-}]_{0} = 0$ $[H^{+}]_{0} \approx 0$	$\xrightarrow{x \text{ mol/L}} \rightarrow $	$[HC_{3}H_{5}O_{3}] = 0.10 - x$ $[C_{3}H_{5}O_{3}^{-}] = x$ $[H^{+}] = x$	

 The change needed to reach equilibrium can be obtained from the equation of percent dissociation

Interactive Example 14.11 - Solution (Continued 3)

For this acid,

Percent dissociation = $3.7\% = \frac{x}{[HC_3H_5O_3]_0} \times 100\%$ = $\frac{x}{0.10} \times 100\%$ $x = \frac{3.7}{100} (0.10) = 3.7 \times 10^{-3} \text{ mol/L}$

Interactive Example 14.11 - Solution (Continued 4)

Now we can calculate the equilibrium concentrations:

 $[HC_3H_5O_3] = 0.10 - x = 0.10 M$ (to the correct number of significant figures)

 $[C_3H_5O_3^{-}] = [H^+] = x = 3.7 \times 10^{-3} M$

 These concentrations can now be used to calculate the value of K_a for lactic acid

Interactive Example 14.11 - Solution (Continued 5)

$$K_{a} = \frac{\left[H^{+}\right]\left[C_{3}H_{5}O_{3}^{-}\right]}{\left[HC_{3}H_{5}O_{3}\right]} = \frac{\left(3.7 \times 10^{-3}\right)\left(3.7 \times 10^{-3}\right)}{0.10}$$
$$K_{a} = 1.4 \times 10^{-4}$$

Problem-Solving Strategy - Solving Acid–Base Problems

- 1. List the major species in solution
- 2. Look for reactions that can be assumed to go to completion
- 3. For a reaction that can be assumed to go to completion:
 - a. Determine the concentration of the products
 - b. Write down the major species in solution after the reaction

Problem-Solving Strategy - Solving Acid—Base Problems (Continued 1)

- 4. Look at each major component of the solution and decide if it is an acid or a base
- 5. Pick the equilibrium that will control the pH
 - Use known values of the dissociation constants for the various species to help decide on the dominant equilibrium
 - a. Write the equation for the reaction and the equilibrium expression

Problem-Solving Strategy - Solving Acid—Base Problems (Continued 2)

- b. Compute the initial concentrations (assuming the dominant equilibrium has not yet occurred)
- c. Define *x*
- d. Compute the equilibrium concentrations in terms of *x*
- e. Substitute the concentrations into the equilibrium expression, and solve for *x*
- f. Check the validity of the approximation
- g. Calculate the pH and other concentrations as required

Exercise

- A 0.15-M solution of a weak acid is 3.0% dissociated
 - Calculate K_a

 $K_{\rm a} = 1.4 \times 10^{-4}$

Strong Bases

- Completely dissociate in water
- Examples
 - Hydroxides of Group 1A elements
 - Alkaline earth hydroxides (Group 2A)

Slaked Lime, Ca(OH)₂

- Possesses low solubility
- Used for scrubbing stack gases to remove sulfur dioxide
- Used in water treatment plants
 - Lime-soda process: Lime (CaO) and soda ash (Na₂CO₃) are added to hard water in order to soften it

Interactive Example 14.12 - The pH of Strong Bases

Calculate the pH of a 5.0 × 10⁻²-M NaOH solution

Interactive Example 14.12 - Solution

- The major species in this solution are Na⁺, OH⁻, and H₂O
- Although autoionization of water also produces OH⁻ ions, the pH will be dominated by the OH⁻ ions from the dissolved NaOH
 - Thus, in the solution:

$$[OH^{-}] = 5.0 \times 10^{-2} M$$

Interactive Example 14.12 - Solution (Continued 1)

Concentration of H⁺ can be calculated from K_w

$$\begin{bmatrix} H^+ \end{bmatrix} = \frac{K_w}{\begin{bmatrix} OH^- \end{bmatrix}} = \frac{1.0 \times 10^{-14}}{5.0 \times 10^{-2}} = 2.0 \times 10^{-13} M$$
$$pH = 12.70$$

Note that this is a basic solution for which
 [OH⁻] > [H⁺] and pH > 7

Interactive Example 14.12 - Solution (Continued 2)

 The added OH⁻ from the salt has shifted the water autoionization equilibrium to the left, significantly lowering [H⁺] compared with that in pure water

$H_2O(l)$ $H^+(aq) + OH^-(aq)$

Bases in Aqueous Solution

- When bases react with water, they increase the concentration of hydroxide ion
 - Have at least one unshared pair of electrons that is capable of forming a bond with a proton
 - Examples
 - Methylamine
 - Dimethylamine
 - Pyridine

General Reaction and its Equilibrium Constant, K_b

General reaction between base B and water

$\mathbf{B}(aq) + \mathbf{H}_{2}\mathbf{O}(l) \blacksquare \blacksquare \mathbf{B}\mathbf{H}^{+}(aq) + \mathbf{O}\mathbf{H}^{-}(aq)$

Base Acid Conjugate acid Conjugate base **Equilibrium constant**


$$K_{\rm b} = \frac{\left[{\rm BH}^{+} \right] \left[{\rm OH}^{-} \right]}{\left[{\rm B} \right]}$$

- K_b refers to trhe reaction of a base with water to form the conjugate acid and the hydroxide ion
- Weak bases: K_b values are small

Interactive Example 14.14 - The pH of Weak Bases II

• Calculate the pH of a 1.0-M solution of methylamine ($K_{\rm b} = 4.38 \times 10^{-4}$)

Interactive Example 14.14 - Solution

- Since methylamine (CH₃NH₂) is a weak base, the major species in solution are CH₃NH₂ and H₂O
 - Both are bases; however, water can be neglected as a source of OH⁻, so the dominant equilibrium is

 $CH_{3}NH_{2}(aq) + H_{2}O(l) \blacksquare \blacksquare CH_{3}NH_{3}^{+}(aq) + OH^{-}(aq)$ $K_{b} = 4.38 \times 10^{-4} = \frac{\left[CH_{3}NH_{3}^{+}\right]\left[OH^{-}\right]}{\left[CH_{3}NH_{2}\right]}$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 14.14 - Solution (Continued 1)

The ICE table is:

	CH ₃ NH ₂ (aq)	+	H ₂ O(<i>I</i>)	${\longleftarrow}$	CH ₃ NH ₃ ⁺ (aq)	+	OH⁻(aq)
Initial	1.0		_		0		0
Change	- <i>x</i>		_		+x		+ <i>x</i>
Equilibrium	1.0 - x		—		X		X

 Substitute the equilibrium concentrations in the equilibrium expression and make the usual approximation

Interactive Example 14.14 - Solution (Continued 2)

$$K_{\rm b} = 4.38 \times 10^{-4} = \frac{\left[{\rm CH}_{3}{\rm NH}_{3}^{+}\right]\left[{\rm OH}^{-}\right]}{\left[{\rm CH}_{3}{\rm NH}_{2}\right]} = \frac{(x)(x)}{1.0-x} \approx \frac{x^{2}}{1.0}$$

 $x \approx 2.1 \times 10^{-2}$

The approximation is valid by the 5% rule, so
 [OH⁻] = x =2.1 × 10⁻² M
 pOH = 1.68
 pH = 14.00 - 1.68 = 12.32

Section 14.7 *Polyprotic Acids*

Introducing Polyprotic Acids

- Acids that can furnish more than one proton
- Dissociate one proton at a time
 - Conjugate base of the first dissociation equilibrium becomes the acid in the second step
- Triprotic acid: Have the ability to furnish three protons
 - Example Phosphoric acid
 - For a typical weak polyprotic acid, $K_{a_1} > K_{a_2} > K_{a_3}$

Introducing Polyprotic Acids (Continued)

- Loss of second or third proton occurs less readily than the loss of the first proton
- The positively charged proton cannot be removed easily as the negative charge on the acid increases
- For a typical polyprotic acid in water, only the first dissociation step significantly contributes to [H⁺]

Interactive Example 14.15 - The pH of a Polyprotic Acid

 Calculate the pH of a 5.0-M H₃PO₄ solution and the equilibrium concentrations of the species H₃PO₄, H₂PO₄⁻, HPO₄²⁻, and PO₄³⁻

Interactive Example 14.15 - Solution

- The major species in solution are H₃PO₄ and H₂O
- None of the dissociation products of H₃PO₄ is written, since the K_a values are all so small that they will be minor species
 - The dominant equilibrium is the dissociation of H₃PO₄ H₃PO₄ (*aq*) $\exists \exists \exists H^+(aq) + H_2PO_4^-(aq)$ $K_{a_1} = 7.5 \times 10^{-3} = \frac{\left[H^+\right]\left[H_2PO_4^-\right]}{\left[H_3PO_4\right]}$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 14.15 - Solution (Continued 1)

The ICE table is:

	H ₃ PO ₄ (aq)	${\longleftarrow}$	H+(<i>aq</i>)	+	H ₂ PO ₄ ⁻ (<i>aq</i>)
Initial	5.0		0		0
Change	-x		+x		+x
Equilibrium	5.0 <i>- x</i>		X		0 + x x

Substitute the equilibrium concentrations into the expression for K_{a1} and make the usual approximation

Interactive Example 14.15 - Solution (Continued 2)

$$K_{a_1} = 7.5 \times 10^{-3} = \frac{\left[H^+\right] \left[H_2 P O_4^-\right]}{\left[H_3 P O_4\right]} = \frac{(x)(x)}{5.0 - x} \approx \frac{x^2}{5.0}$$

• Thus, $x \approx 1.9 \times 10^{-1}$

 Since 1.9 × 10⁻¹ is less than 5% of 5.0, the approximation is acceptable

$$[H^+] = x = 0.19 M$$

 $pH = 0.72$

Interactive Example 14.15 - Solution (Continued 3)

- So far we have determined that $[H^+] = [H_2PO_4^-] = 0.19 M$ $[H_3PO_4] = 5.0 - x = 4.8 M$
 - The concentration of HPO₄²⁻ can be obtained by using the expression for K_{a2}

$$K_{a_2} = 6.2 \times 10^{-8} = \frac{\left[H^+\right] \left[HPO_4^{2-}\right]}{\left[H_2PO_4\right]} \text{ where } \left[H^+\right] = \left[H_2PO_4^-\right] = 0.19M$$

Interactive Example 14.15 - Solution (Continued 4)

- Thus, $[\text{HPO}_4^{2-}] = K_{a_2} = 6.2 \times 10^{-8} M$
- To calculate [PO₄^{3–}], we use the expression for K_{a3} and the values of [H⁺] and [HPO₄^{2–}] calculated previously:

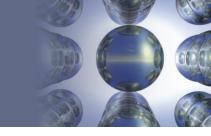
$$K_{a_3} = \frac{\left[H^+\right] \left[PO_4^{3-}\right]}{\left[HPO_4^{2-}\right]} = 4.8 \times 10^{-13} = \frac{0.19 \left[PO_4^{3-}\right]}{\left(6.2 \times 10^{-8}\right)}$$
$$\left[PO_4^{3-}\right] = \frac{\left(4.8 \times 10^{-13}\right) \left(6.2 \times 10^{-8}\right)}{0.19} = 1.6 \times 10^{-19} M$$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 14.15 - Solution (Continued 5)

- These results show that the second and third dissociation steps do not make an important contribution to [H⁺]
 - This is apparent from the fact that [HPO₄²⁻] is 6.2 × 10⁻⁸ M, which means that only 6.2 × 10⁻⁸ mol/L H₂PO₄⁻ has dissociated
 - The value of [PO₄³⁻] shows that the dissociation of HPO₄²⁻ is even smaller
 - We must use the second and third dissociation steps to calculate [HPO₄²⁻] and [PO₄³⁻], since these steps are the only sources of these ions

Critical Thinking


- What if the three values of K_a for phosphoric acid were closer to each other in value?
 - Why would this complicate the calculation of the pH for an aqueous solution of phosphoric acid?

Sulfuric Acid - A Unique Polyprotic Acid

 A strong acid in its first dissociation step and a weak acid in its second step

 $H_{2}SO_{4}(aq) \longrightarrow H^{+}(aq) + HSO_{4}^{-}(aq) \quad K_{a_{1}} \text{ is very large}$ $HSO_{4}^{-}(aq) \square \square H^{+}(aq) + SO_{4}^{2-}(aq) \quad K_{a_{2}} = 1.2 \times 10^{-2}$

Example 14.17 - The pH of Sulfuric Acid

• Calculate the pH of a $1.00 \times 10^{-2} M H_2 SO_4$ solution

Example 14.17 - Solution

- The major species in solution are H⁺, HSO₄⁻, and H₂O
- Consider the dissociation of HSO₄⁻
 - ICE table

	HSO ₄ -(aq)	<u> </u>	H ⁺ (<i>aq</i>)	+	SO ₄ ²⁻ (aq)
Initial	0.0100		0.0100		0
			(From dissociation		
			of H ₂ SO ₄		
Change	- <i>x</i>		+x		+x
Equilibrium	0.0100 - x		0.0100 + x		x

Example 14.17 - Solution (Continued 1)

Substitute the equilibrium concentrations into the expression for K_{a2}

$$1.2 \times 10^{-2} = K_{a_2} = \frac{\left[H^+\right] \left[SO_4^{2-}\right]}{\left[HSO_4^-\right]} = \frac{\left(0.0100 + x\right)(x)}{\left(0.0100 - x\right)}$$

• If we make the usual approximation, then $0.0100 + x \approx 0.0100$ and $0.0100 - x \approx 0.0100$, and we have

$$1.2 \times 10^{-2} = \frac{(0.0100 + x)(x)}{(0.0100 - x)} \approx \frac{(0.0100)x}{(0.0100)}$$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Example 14.17 - Solution (Continued 2)

The calculated value of x is

$$x = 1.2 \times 10^{-2} = 0.012$$

- This value is larger than 0.010, clearly a ridiculous result
- Thus, we cannot make the usual approximation and must instead solve the quadratic equation

Example 14.17 - Solution (Continued 3)

$$1.2 \times 10^{-2} = \frac{(0.0100 + x)(x)}{(0.0100 - x)}$$

• The above expression leads to: $(1.2 \times 10^{-2})(0.0100 - x) = (0.0100 + x)(x)$ $(1.2 \times 10^{-4}) - (1.2 \times 10^{-2}) x = (1.0 \times 10^{-2}) x + x^2$ $x^2 + (2.2 \times 10^{-2}) x - (1.2 \times 10^{-4}) = 0$

Example 14.17 - Solution (Continued 4)

This equation can be solved using the quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$b = 2.2 \times 10^{-2}$$

a = 1

 $c = -1.2 \times 10^{-4}$

 Use of the quadratic formula gives one negative root (which cannot be correct) and one positive root,

$$x = 4.5 \times 10^{-3}$$

Example 14.17 - Solution (Continued 5)

Thus,

 $[H^+] = 0.0100 + x = 0.0100 + 0.0045 = 0.0145$ pH = 1.84

- Note that in this case the second dissociation step produces about half as many H⁺ ions as the initial step does
 - This problem also can be solved by successive approximations

Salts

- Another name for ionic compounds
- Disintegrate into ions when dissolved in water
 - Have independent movement in dilute solutions
 - Behave as acids or bases under certain conditions

Salts That Produce Neutral Solutions

- When dissolved in water, salts that consist of cations of strong bases and anions of strong acids have no effect on [H⁺]
 - Gives a neutral solution (pH = 7)
 - Examples KCl, NaCl, NaNO₃, and KNO₃

Salts That Produce Basic Solutions

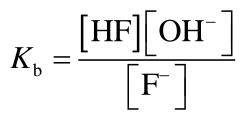
- A basic solution is formed if the anion of the salt is the conjugate base of a weak acid
 - K_b value for the anion can be obtained from the relationship

 $K_{\rm b} = K_{\rm w}/K_{\rm a}$

Example - Sodium acetate (NaC₂H₃O₂)

Interactive Example 14.18 - Salts as Weak Bases

- Calculate the pH of a 0.30-M NaF solution
 - The K_a value for HF is 7.2×10^{-4}



Interactive Example 14.18 - Solution

- The major species in solution are Na⁺, F⁻, and H₂O
- Since HF is a weak acid, the F⁻ ion must have a significant affinity for protons, and the dominant reaction will be

 $F^{-}(aq) + H_2O(l) \square \square HF(aq) + OH^{-}(aq)$

This yields the following K_b expression:

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 14.18 - Solution (Continued 1)

Value of K_b can be calculated from K_w and the K_a value for HF:

$$K_{\rm b} = \frac{K_{\rm w}}{K_{\rm a} \,(\text{for HF})} = \frac{1.0 \times 10^{-14}}{7.2 \times 10^{-4}} = 1.4 \times 10^{-11}$$

The corresponding ICE table is:

	F ⁻ (<i>aq</i>)	+	$H_2O(I)$	${\longleftarrow}$	HF(aq)	+	OH⁻(aq)
Initial	0.30		_		0		≈0
C hange	- <i>x</i>		—		+x		+x
Equilibrium	0.30 <i>- x</i>		_		X		x

Interactive Example 14.18 - Solution (Continued 2)

- Thus, $K_{\rm b} = 1.4 \times 10^{-11} = \frac{\left[\mathrm{HF}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]} = \frac{(x)(x)}{0.30 - (x)} \approx \frac{x^{2}}{0.30}$ $x \approx 2.0 \times 10^{-6}$
- The approximation is valid by the 5% rule

Interactive Example 14.18 - Solution (Continued 3)

 $[OH^{-}] = x = 2.0 \times 10^{-6} M$ pOH = 5.69 pH = 14.00 - 5.69 = 8.31

• As expected, the solution is basic

Base Strength in Aqueous Solutions

 Consider the dissociation of hydrocyanic acid in H₂O

 $\mathrm{HCN}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \Box \Box \mathrm{H}_{3}\mathrm{O}^{+}(aq) + \mathrm{CN}^{-}(aq) \quad K_{\mathrm{a}} = 6.2 \times 10^{-10}$

• CN⁻ appears to be a strong base in this reaction $CN^{-}(aq) + H_2O(l) = HCN(aq) + OH^{-}(aq)$ $K_b = \frac{K_w}{K_a} = \frac{1.0 \times 10^{-14}}{6.2 \times 10^{-10}} = 1.6 \times 10^{-5}$

Base Strength in Aqueous Solutions (Continued)

- CN⁻ appears to be a weak base when cyanide ion reacts with water
 - Competes with the hydroxide ion for H⁺ instead of competing with water
- Relative base strengths

 $OH^- > CN^- > H_2O$

Salts That Produce Acidic Solutions

- Salts in which the anion is not a base and the cation is the conjugate acid of a weak base
 - Example Ammonium chloride (NH₄Cl)
- Salts that contain highly charged metal ions
 - Example Solid aluminum chloride (AlCl₃)
 - Higher the charge on the metal ion, stronger the acidity of the hydrated ion

Interactive Example 14.19 - Salts as Weak Acids I

- Calculate the pH of a 0.10-M NH₄Cl solution
 - The $K_{\rm b}$ value for NH₃ is 1.8×10^{-5}

Interactive Example 14.19 - Solution

- The major species in solution are NH₄⁺, Cl⁻, and H₂O
 - Note that both NH₄⁺ and H₂O can produce H⁺
 - The dissociation reaction for the NH₄⁺ ion is

$$NH_{4}^{+}(aq) \square \square NH_{3}(aq) + H^{+}(aq)$$
$$K_{a} = \frac{[NH_{3}][H^{+}]}{[NH_{4}^{+}]}$$

Copyright ©2017 Cengage Learning. All Rights Reserved.

Interactive Example 14.19 - Solution (Continued 1)

- Note that although the K_b value for NH₃ is given, the reaction corresponding to K_b is not appropriate here, since NH₃ is not a major species in the solution
 - Instead, the given value of K_b is used to calculate K_a for NH₄⁺ from the relationship

$$K_{\rm a} \times K_{\rm b} = K_{\rm w}$$

Interactive Example 14.19 - Solution (Continued 2)

Thus,

$$K_{\rm a} \left(\text{for NH}_4^+ \right) = \frac{K_{\rm w}}{K_{\rm b} \left(\text{for NH}_3 \right)} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$

- Although NH₄⁺ is a very weak acid, as indicated by its K_a value, it is stronger than H₂O and will dominate in the production of H⁺
 - Thus, we will focus on the dissociation reaction of NH₄⁺ to calculate the pH in this solution

Interactive Example 14.19 - Solution (Continued 3)

	$NH_4^+(aq)$	$\stackrel{\frown}{\longrightarrow}$	$H^+(aq)$	+	NH₃(aq)
Initial	0.10		≈0		0
Change	-x		+x		+x
Equilibrium	0.10 <i>- x</i>		X		x

Thus,

$$5.6 \times 10^{-10} = K_{a} = \frac{\left[H^{+}\right]\left[NH_{3}\right]}{\left[NH_{4}^{+}\right]} = \frac{(x)(x)}{0.10 - x} \approx \frac{x^{2}}{0.10}$$
$$x \approx 7.5 \times 10^{-6}$$

Interactive Example 14.19 - Solution (Continued 4)

• The approximation is valid by the 5% rule, so $[H^+] = x = 7.5 \times 10^{-6} M$ pH = 5.13

Section 14.8 Acid–Base Properties of Salts Table 14.5 - Qualitative Prediction of pH for Solutions of Salts

$$\begin{aligned} & \textit{K}_{a} > \textit{K}_{b} & pH < 7 \text{ (acidic)} \\ & \textit{K}_{b} > \textit{K}_{a} & pH > 7 \text{ (basic)} \\ & \textit{K}_{a} = \textit{K}_{b} & pH = 7 \text{ (neutral)} \end{aligned}$$

Both cation and anion have acidic or basic properties

Interactive Example 14.21 - The Acid–Base Properties of Salts

- Predict whether an aqueous solution of each of the following salts will be acidic, basic, or neutral
 - a. $NH_4C_2H_3O_2$
 - b. NH₄CN

Section 14.8 Acid–Base Properties of Salts

Interactive Example 14.21 - Solution (a)

- The ions in solution are NH₄⁺ and C₂H₃O₂⁻
- K_a for NH₄⁺ is 5.6 × 10⁻¹⁰
- $K_{\rm b}$ for $C_2 H_3 O_2^{-1}$ is 5.6 × 10⁻¹⁰
 - Thus, K_a for NH₄⁺ is equal to K_b for C₂H₃O₂⁻, and the solution will be neutral (pH = 7)

Section 14.8 Acid–Base Properties of Salts

Interactive Example 14.21 - Solution (b)

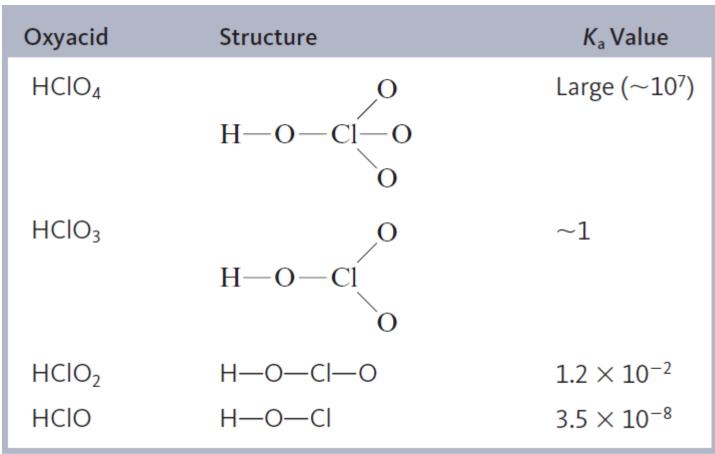
- The solution will contain NH₄⁺ and CN⁻ ions
 - The K_a value for NH₄⁺ is 5.6 × 10⁻¹⁰ and

$$K_{\rm b} \left(\text{for CN}^{-} \right) = \frac{K_{\rm w}}{K_{\rm a} \left(\text{for HCN} \right)} = 1.6 \times 10^{-5}$$

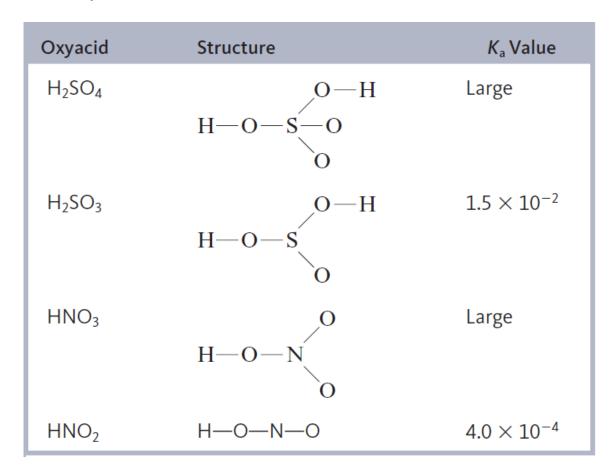
- Since K_b for CN⁻ is much larger than K_a for NH₄⁺, CN⁻ is a much stronger base than NH₄⁺ is an acid
- The solution will be basic

Acids and Bases

- Factors that determine whether a molecule containing an X—H bond behaves as a Brønsted– Lowry acid
 - Bond strength
 - Bond polarity
- Classes of acids Hydrogen halides, oxyacids, and hydrated metal ions


Table 14.7 - Bond Strengths and Acid Strengths forHydrogen Halides

H—X Bond	Bond Strength (kJ/mol)	Acid Strength in Water
H—F	565	Weak
H—Cl	427	Strong
H—Br	363	Strong
H—I	295	Strong


Oxyacids

- Contain the grouping H—O—X
- For a given series, the acid strength increases with an increase in the number of oxygen atoms attached to the central atom
- Acid strength is successively greater as the number of oxygen atoms increases
 - Oxygen atoms become more effective at drawing electrons away from the X atom and the O—H bond
 - Weaken and polarize the O—H bond Generative All Bishts Provide All

Table 14.8 - Several Series of Oxyacids and Their *K*_a Values

Table 14.8 - Several Series of Oxyacids and Their K_a Values (Continued)

Table 14.9 - Comparison of Electronegativity of X and K_a Value for a Series of Oxyacids

Acid	Х	Electronegativity of X	K _a for Acid
HOCI	Cl	3.0	4×10^{-8}
HOBr	Br	2.8	2×10^{-9}
HOI	l.	2.5	2×10^{-11}
HOCH ₃	CH_3	2.3 (for carbon in CH_3)	$\sim 10^{-15}$

Hydrated Metal Ions

- Exhibit behavior similar to oxyacids
- Greater the charge on the metal ion, more acidic the hydrated ion becomes

Section 14.10 Acid–Base Properties of Oxides

Acidic Strength in Oxides

- A compound containing the H—O—X group will produce:
 - An acidic solution in water if the O—X bond is strong and covalent
 - A basic solution in water if the O—X bond is ionic
- High electronegativity of X will lead to covalent and strong O—X bond
 - Low electronegativity will lead to ionic and weak O—X bond

Section 14.10 Acid–Base Properties of Oxides

Acidic Oxides

- Formed when covalent oxides are dissolved in water
 - Leads to the formation of an acidic solution
 - O—X bond remains intact
- Examples SO₂, CO₂, and NO₂

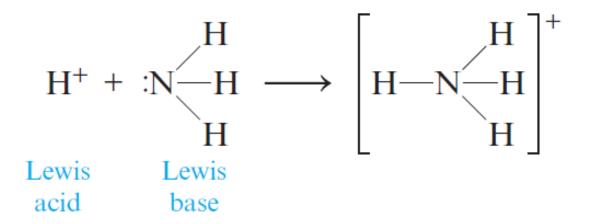
Section 14.10 Acid–Base Properties of Oxides

Basic Oxides

- Ionic oxides dissolve in water to form basic solutions
- Examples K₂O and CaO
 - Oxide ion has a high affinity for protons and reacts with water to produce hydroxide ions

Lewis Acids and Bases

- Lewis acid: Electron-pair acceptor
 - Contains an empty atomic orbital that can be used to accept an electron pair from the Lewis base
- Lewis base: Electron-pair donor


Table 14.10 - Three Models for Acids and Bases

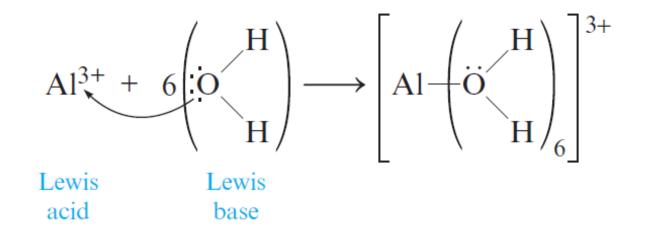
Model	Definition of Acid	Definition of Base
Arrhenius	H ⁺ producer	OH [–] producer
Brønsted–Lowry	H ⁺ donor	H ⁺ acceptor
Lewis	Electron-pair acceptor	Electron-pair donor

The Lewis Model and Brønsted–Lowry Acid–Base Reactions

 Reaction between a proton and an NH₃ molecule can be represented as a reaction between an electron pair acceptor (H⁺) and electron-pair donor (NH₃)

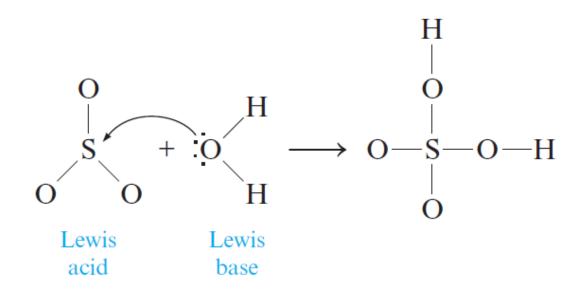
The Lewis Model and Other Reactions

- Lewis model for acids and bases covers many reactions that do not involve Brønsted–Lowry acids
 - Example Gas-phase reaction between boron trifluoride and ammonia
 - Electron-deficient BF₃ molecule completes its octet by reacting with NH₃, which : \vec{F} : $\vec{F$


acid

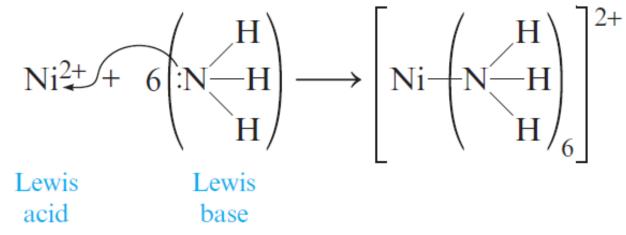
base

The Lewis Model and Other Reactions (Continued 1)


- Example Hydration of a metal ion, Al³⁺
 - Ion accepts one electron pair from each of the water molecules to form the complex ion Al(H₂O)₆³⁺

The Lewis Model and Other Reactions (Continued 2)

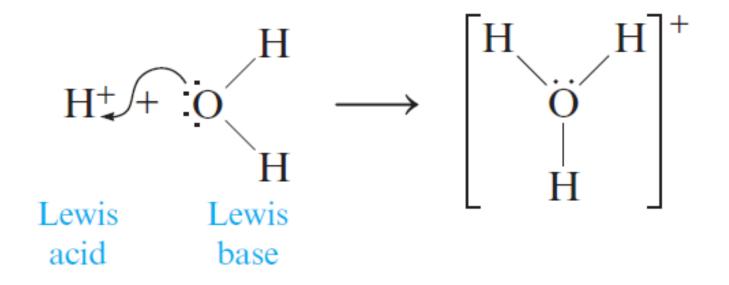
- Reaction between a covalent oxide and water
 - Example Reaction between sulfur trioxide and water
 - Proton shift leads to the formation of sulfuric acid


Example 14.22 - Lewis Acids and Bases

- For each reaction, identify the Lewis acid and base
 - a. $\operatorname{Ni}^{2+}(aq) + 6\operatorname{NH}_3(aq) \longrightarrow \operatorname{Ni}(\operatorname{NH}_3)_6^{2+}(aq)$
 - **b.** $H^+(aq) + H_2O(aq) \square \square H_3O^+(aq)$

Example 14.22 - Solution (a)

 Each NH₃ molecule donates an electron pair to the Ni²⁺ ion:



 The nickel(II) ion is the Lewis acid, and ammonia is the Lewis base

Example 14.22 - Solution (b)

 The proton is the Lewis acid and the water molecule is the Lewis base

Section 14.12 Strategy for Solving Acid–Base Problems: A Summary

Analyzing an Acid–Base Equilibrium Problem

- Analysis done at the beginning of the problem is imperative
 - Note the major species present in the solution
 - Determine if the reaction will go to completion
 - Ascertain the equilibrium that dominates the solution