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Solution Composition 

 As mixtures have variable composition, relative 
amounts of substances in a solution must be 
specified 

 Qualitative terms - Dilute and concentrated 

 Molarity (M): Number of moles of solute per liter of 
solution 
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moles of solute
Molarity

liters of solution

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Solution Composition (Continued) 

 Mass percent (weight percent) 

 

 

 Mole fraction (χ) 

 
 

 Molality (m) 
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mass of solute
Mass percent 100%

mass of solution

 
  
 

A
A

A B

Mole fraction of component A = 
n

n n
 



moles of solute
Molality

kilogram of solvent

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Interactive Example 11.1 - Various Methods for 
Describing Solution Composition 

 A solution is prepared by mixing 1.00 g ethanol 
(C2H5OH) with 100.0 g water to give a final 
volume of 101 mL 

 Calculate the molarity, mass percent, mole fraction, 
and molality of ethanol in this solution 
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Interactive Example 11.1 - Solution 

 Molarity 

 The moles of ethanol can be obtained from its molar 
mass (46.07 g/mol): 

22 5
2 5 2 5

2 5

1 mol C H OH
1.00 g C H OH  2.17  10  mol C H OH

46.07 g C H OH

  

1 L
Volume 101 mL  0.101 L

1000 mL
  
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Interactive Example 11.1 - Solution (Continued 1) 

 

 
 

 Mass percent  

2

2 5
2 5

moles of C H OH 2.17  10  mol
Molarity of C H OH =

liters of solution 0.101 L




2 5Molarity of C H OH = 0.215 M

2 5
2 5

mass of C H OH
Mass percent C H OH = 100%

mass of solution

 
 

 

2 5
2 5

2 2 5

1.00 g C H OH
100%  0.990% C H OH

100.0 g H O + 1.00 g C H OH

 
   
 
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Interactive Example 11.1 - Solution (Continued 2) 

 Mole fraction 

 2 5

2 5 2

C H OH

2 5

C H OH H O

Mole fraction of C H OH = 
 

n

n n

2

2
H O 2

2

1 mol H O
100.0 g H O  5.56 mol

18.0 g H O
  n

2 5

2

C H OH 2

2.17  10  mol

2.17  10  mol  5.56 mol








 


22.17  10
0.00389

5.58


 
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Interactive Example 11.1 - Solution (Continued 3) 

 Molality  

2

2 5
2 5

2

moles of C H OH 2.17 10  mol
Molality of C H OH = 

1 kgkilogram of H O
100.0 g 

1000 g






22.17 10  mol
0.217 

0.1000 kg
m


 
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Critical Thinking 

 You are given two aqueous solutions with 
different ionic solutes (Solution A and Solution B) 

 What if you are told that Solution A has a greater 
concentration than Solution B by mass percent, but 
Solution B has a greater concentration than Solution A 
in terms of molality?  

 Is this possible?  
 If not, explain why not 

 If it is possible, provide example solutes for A and B and justify your 
answer with calculations 
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Normality (N) 

 Measure of concentration  

 Number of equivalents per liter of solution  

 Definition of an equivalent depends on the reaction 
that takes place in a solution 

 For acid–base reactions, the equivalent is the mass of acid 
or base that can accept or provide exactly 1 mole of protons 

 For oxidation–reduction reactions, the equivalent is the 
quantity of oxidizing or reducing agent that can accept or 
provide 1 mole of electrons 
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Interactive Example 11.2 - Calculating Various Methods 
of Solution Composition from the Molarity 

 The electrolyte in automobile lead storage 
batteries is a 3.75 M sulfuric acid solution that has 
a density of 1.230 g/mL 

 Calculate the mass percent, molality, and normality of 
the sulfuric acid 
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Interactive Example 11.2 - Solution 

 What is the density of the solution in grams per 
liter? 

 
 

 What mass of H2SO4 is present in 1.00 L of 
solution? 

 We know 1 liter of this solution contains 1230 g of the 
mixture of sulfuric acid and water 

 

3g 1000 mL
1.230   1.230  10  g/L

mL 1 L
  
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Interactive Example 11.2 - Solution (Continued 1) 

 Since the solution is 3.75 M, we know that 3.75 moles 
of H2SO4 is present per liter of solution 

 The number of grams of H2SO4 present is 

 
2 4

2 4

98.0 g H SO
3.75 mol  368 g H SO

1 mol
 
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Interactive Example 11.2 - Solution (Continued 2) 

 How much water is present in 1.00 L of solution? 

 The amount of water present in 1 liter of solution is 
obtained from the difference 

 
 

 What is the mass percent? 

 Since we now know the masses of the solute and 
solvent, we can calculate the mass percent 

 

2 4 21230 g solution  368 g H SO  = 862 g H O
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Interactive Example 11.2 - Solution (Continued 3) 

 

 

 
 

 What is the molality? 

 From the moles of solute and the mass of solvent, we 
can calculate the molality 

2 4
2 4

mass of H SO
Mass percent H SO   100%

mass of solution
 

368 g
  100%

1230 g
 

2 4= 29.9% H SO
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Interactive Example 11.2 - Solution (Continued 4) 

2 4
2 4

2

moles H SO
Molality of H SO

kilogram of H O


2 4

2
2

2

3.75 mol H SO
4.35 

1 kg H O
862 g H O

1000 g H O

m 


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Interactive Example 11.2 - Solution (Continued 5) 

 What is the normality? 

 Since each sulfuric acid molecule can furnish two 
protons, 1 mole of H2SO4 represents 2 equivalents 

 Thus, a solution with 3.75 moles of H2SO4 per liter 
contains 2×3.75 = 7.50 equivalents per liter 

 The normality is 7.50 N 
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Steps Involved in the Formation of a Liquid Solution 

1. Expand the solute 

 Separate the solute into its individual components 

2. Expand the solvent 

 Overcome intermolecular forces in the solvent to 
make room for the solute 

3. Allow the solute and solvent to interact to form 
the solution 
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Steps Involved in the Formation of a Liquid Solution 
(Continued) 

 Steps 1 and 2 are endothermic 

 Forces must be overcome to expand the solute and 
solvent 

 Step 3 is often exothermic 
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Enthalpy (Heat) of Solution (ΔHsoln) 

 Enthalpy change associated with the formation of 
the solution is the sum of the ΔH values for the 
steps: 

 

 ΔHsoln can have a positive sign when energy is 
absorbed or a negative sign when energy is released 
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soln 1 2 3H H H H    
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Figure 11.2 - The Heat of Solution 
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Factors That Favor a Process  

 Increase in probability of the mixed state when 
the solute and solvent are placed together 

 Processes that require large amounts of energy 
tend not to occur 

 Like dissolves like 
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Table 11.3 - The Energy Terms for Various Types of 
Solutes and Solvents 
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Critical Thinking  

 You and a friend are studying for a chemistry 
exam 
 What if your friend tells you, “Since exothermic 

processes are favored and the sign of the enthalpy 
change tells us whether or not a process is 
endothermic or exothermic, the sign of ΔHsoln tells us 
whether or not a solution will form”?  
 How would you explain to your friend that this conclusion is 

not correct? What part, if any, of what your friend says is 
correct? 
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Interactive Example 11.3 - Differentiating Solvent 
Properties 

 Decide whether liquid hexane (C6H14) or liquid 
methanol (CH3OH) is the more appropriate 
solvent for the substances grease (C20H42) and 
potassium iodide (KI) 
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Interactive Example 11.3 - Solution 

 Hexane is a nonpolar solvent because it contains 
C—H bonds 

 Hexane will work best for the nonpolar solute grease 

 Methanol has an O—H group that makes it 
significantly polar 

 Will serve as the better solvent for the ionic solid KI 
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Exercise  

 For each of the following pairs, predict which 
substance would be more soluble in water 

NH3 

CH3COOH 
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Structure Effects 

 Vitamins can be used to study the relationship 
among molecular structure, polarity, and 
solubility  

 Fat-soluble vitamins (A, D, E, and K) are nonpolar  

 Considered to be hydrophobic (water-fearing) 

 Can build up in the fatty tissues of the body 

 Water-soluble vitamins (B and C) are polar  

 Considered to be hydrophilic (water-loving) 

 Must be consumed regularly as they are excreted 
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Pressure Effects 

 Pressure increases the solubility of a gas  

 Henry’s law: Amount of a gas dissolved in a solution is 
directly proportional to the pressure of the gas above 
the solution 

 
 C - Concentration of the dissolved gas 

 k - Constant 

 P - Partial pressure of the gaseous solute above the solution 
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C kP
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Figure 11.5 - Schematic Diagram That Depicts the 
Increase in Gas Solubility with Pressure  
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Interactive Example 11.4 - Calculations Using Henry’s 
Law 

 A certain soft drink is bottled so that a bottle at 
25°C contains CO2 gas at a pressure of 5.0 atm 
over the liquid 

 Assuming that the partial pressure of CO2 in the 
atmosphere is 4.0×10–4 atm, calculate the 
equilibrium concentrations of CO2 in the soda both 
before and after the bottle is opened 

 The Henry’s law constant for CO2 in aqueous solution is 
3.1×10–2 mol/L · atm at 25°C 
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Interactive Example 11.4 - Solution 

 What is Henry’s law for CO2? 

 CCO2
 = kCO2

PCO2 
 

 Where kCO2
 = 3.1×10–2 mol/L · atm 

 What is the CCO2
 in the unopened bottle? 

 In the unopened bottle, PCO2
 = 5.0 atm 

  

2 2 2CO CO CO

2

 =  

        = 3.1  10  mol/L  atm 5.0 atm  = 0.16 mol/L 

C k P
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Interactive Example 11.4 - Solution (Continued) 

 What is the CCO2
 in the opened bottle? 

 In the opened bottle, the CO2 in the soda eventually 
reaches equilibrium with the atmospheric CO2, so PCO2

 
= 4.0×10–4 atm and 

 

 

 

 Note the large change in concentration of CO2 

 This is why soda goes “flat” after being open for a while 

 

 
2 2 2

2 4

CO CO CO

5

mol
 = 3.1  10 4.0  10  atm

L atm

        =1.2  10  mol/L

 



 
   

 



C k P
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Temperature Effects (for Aqueous Solutions) 

 Solids dissolve rapidly at higher temperatures 

 Amount of solid that can be dissolved may increase or 
decrease with increasing temperature 

 Solubilities of some substances decrease with 
increasing temperature 

 Predicting temperature dependence of solubility 
is very difficult 
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Figure 11.7 - The Solubilities of Several Gases in Water 
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Temperature Effects (for Aqueous Solutions) (Continued) 

 Solubility of a gas in water decreases with 
increasing temperature 

 Water used for industrial cooling is returned to its 
natural source at higher than ambient temperatures  

 Causes thermal pollution  

 Warm water tends to float over the colder water, blocking 
oxygen absorption  

 Leads to the formation of boiler scale  
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Figure 11.9 - An Aqueous Solution and Pure Water in a 
Closed Environment 
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Vapor Pressures of Solutions 

 Presence of a nonvolatile 
solute lowers the vapor 
pressure of a solvent 

 Inhibits the escape of 
solvent molecules from the 
liquid 
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Raoult's Law 

 
 

 

 

 

 Psoln - Observed vapor pressure of the solution  

 χsolvent - Mole fraction of the solvent  

 P0
solvent - Vapor pressure of the pure solvent  

 Nonvolatile solute simply dilutes the solvent 
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Graphical Representation of Raoult's Law  

 Can be represented as a linear equation of the 
form y = mx + b 

 y = Psoln 

 x = χsolvent  

 m = P0
solvent 

 b = 0 

 Slope of the graph is a straight line with a slope 
equal to P0

solvent 
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Figure 11.11 - Plot of Raoult's Law  
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Interactive Example 11.5 - Calculating the Vapor 
Pressure of a Solution 

 Calculate the expected vapor pressure at 25°C 
for a solution prepared by dissolving 158.0 g 
common table sugar (sucrose, molar mass = 342.3 
g/mol) in 643.5 cm3 of water 

 At 25°C, the density of water is 0.9971 g/cm3 and the 
vapor pressure is 23.76 torr 
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Interactive Example 11.5 - Solution 

 What is Raoult’s law for this case? 

 

 

 To calculate the mole fraction of water in the solution, 
we must first determine the number of moles of 
sucrose and the moles of water present 

2 2

0

soln H O H OP P
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Interactive Example 11.5 - Solution (Continued 1) 

 What are the moles of sucrose? 

 

 

 What are the moles of water? 

 To determine the moles of water present, we first 
convert volume to mass using the density: 

3 2
2 23

2

0.9971 g H O
643.5 cm  H O  641.6 g H O

cm  H O
 

1 mol sucrose
Moles of sucrose 158.0 g sucrose  0.4616 mol sucrose

342.3 g sucrose
  
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Interactive Example 11.5 - Solution (Continued 2) 

 The number of moles of water  

 

 

 What is the mole fraction of water in the 
solution? 

 

2
2 2

2

1 mol H O
641.6 g H O 35.60 mol H O

18.02 g H O
 

2

2
H O

2

mol H O 35.60 mol

mol H O + mol sucrose 35.60 mol + 0.4616 mol
  

35.60 mol
0.9873

36.06 mol
 
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Interactive Example 11.5 - Solution (Continued 3) 

 The vapor pressure of the solution is: 

 

 
 

 The vapor pressure of water has been lowered 
from 23.76 torr in the pure state to 23.46 torr in 
the solution 

 The vapor pressure has been lowered by 0.30 torr 

2 2

0

soln H O H OP P

  0.9872 23.76 torr 23.46 torr 
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Lowering of the Vapor Pressure  

 Helps in counting molecules  

 Provides a means to experimentally determine molar 
masses 

 Raoult’s law helps ascertain the number of moles of 
solute present in a solution  

 Helps characterize solutions  

 Provides valuable information about the nature of the 
solute after it dissolves  
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Nonideal Solutions 

 Both components are volatile in liquid–liquid 
solutions  

 Contribute to the total vapor pressure  

 Modified Raoult’s law is applied here  

 
 

 PTOTAL - Total vapor pressure of a solution containing A and B 

 χA and χB - Mole fractions of A and B 
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TOTAL A B A A B B       P P P P P 
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Nonideal Solutions (Continued) 

 P0
A and P0

B - Vapor pressures of pure A and pure B  

 PA and PB - Partial pressures resulting from molecules of A 
and of B in the vapor above the solution 

 Ideal solution: Liquid–liquid solution that obeys 
Raoult’s law 

 Nearly ideal behavior is observed when solute–solute, 
solvent–solvent, and solute–solvent interactions are 
similar  

Copyright © Cengage Learning. All rights reserved 51 



Section 11.4 
The Vapor Pressures of Solutions 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Behavior of Various Types of Solutions  

 When ΔHsoln is large and negative: 

 Strong interactions exist between the solvent and 
solute  

 A negative deviation is expected from Raoult’s law 

 Both components have low escaping tendency in the 
solution than in pure liquids  

 Example - Acetone–water         
solution  
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Behavior of Various Types of Solutions (Continued 1) 

 When ΔHsoln is positive (endothermic), solute–
solvent interactions are weaker 

 Molecules in the solution have a higher tendency to 
escape, and there is positive deviation from Raoult’s 
law  

 Example - Solution of ethanol and hexane  
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Behavior of Various Types of Solutions (Continued 2) 

 In a solution of very similar liquids: 

 ΔHsoln is close to zero  

 Solution closely obeys Raoult’s law  

 Example - Benzene and toluene 
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Interactive Example 11.7 - Calculating the Vapor 
Pressure of a Solution Containing Two Liquids 

 A solution is prepared by mixing 5.81 g acetone 
(C3H6O, molar mass = 58.1 g/mol) and 11.9 g 
chloroform (HCCl3, molar mass = 119.4 g/mol) 

 At 35°C, this solution has a total vapor pressure of 
260 torr 

 Is this an ideal solution?  

 The vapor pressures of pure acetone and pure chloroform at 
35°C are 345 and 293 torr, respectively 
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Interactive Example 11.7 - Solution 

 To decide whether this solution behaves ideally, 
we first calculate the expected vapor pressure 
using Raoult’s law: 

 
 

 A stands for acetone, and C stands for chloroform 

 The calculated value can then be compared with the 
observed vapor pressure 

0 0

TOTAL A A C CP P P  
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Interactive Example 11.7 - Solution (Continued 1) 

 First, we must calculate the number of moles of 
acetone and chloroform: 

1 mol acetone
5.81 g acetone  0.100 mol acetone

58.1 g acetone
 

1 mol chloroform
11.9 g chloroform  0.100 mol chloroform

119 g chloroform
 
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Interactive Example 11.7 - Solution (Continued 2) 

 The solution contains equal numbers of moles of 
acetone and chloroform 

χA = 0.500 and χC = 0.500 

 The expected vapor pressure is 

 
 

 Comparing this value with the observed pressure of 
260 torr shows that the solution does not behave 
ideally 

     TOTAL 0.500 345 torr   0.500 293 torr 319 torrP   



Section 11.4 
The Vapor Pressures of Solutions 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Interactive Example 11.7 - Solution (Continued 3) 

 The observed value is lower than that expected 

 This negative deviation from Raoult’s law can be 
explained in terms of the hydrogen-bonding 
interaction which lowers the tendency of these 
molecules to escape from the solution 
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Colligative Properties 

 Depend on the number of the solute particles in 
an ideal solution 

 Do not depend on the identity of the solute particles  

 Include boiling-point elevation, freezing-point 
depression, and osmotic pressure 

 Help determine: 

 The nature of a solute after it is dissolved in a solvent  

 The molar masses of substances  
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Boiling-Point Elevation 

 Nonvolatile solute elevates the boiling point of 
the solvent 

 Magnitude of the boiling-point elevation depends on 
the concentration of the solute 

 Change in boiling point can be represented as follows: 

 
 ΔT - Boiling-point elevation 

 Kb - Molal boiling-point elevation constant 

 msolute - Molality of the solute 
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Figure 11.14 - Phase Diagrams for Pure Water and for 
an Aqueous Solution Containing a Nonvolatile Solute 
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Table 11.5 - Molal Boiling-Point Elevation Constants (Kb) and 
Freezing-Point Depression Constants (Kf) for Several Solvents 
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Interactive Example 11.8 - Calculating the Molar Mass 
by Boiling-Point Elevation  

 A solution was prepared by dissolving 18.00 g 
glucose in 150.0 g water, and the resulting 
solution was found to have a boiling point of 
100.34°C 

 Calculate the molar mass of glucose 

 Glucose is a molecular solid that is present as individual 
molecules in solution 
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Interactive Example 11.8 - Solution 

 We make use of the following equation: 

 
 Where ΔT = 100.34°C – 100.00°C = 0.34°C 

 For water, Kb = 0.51 

 The molality of this solution then can be 
calculated by rearranging the boiling-point 
elevation equation 

b soluteT K m 
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Interactive Example 11.8 - Solution (Continued 1) 

 

 

 The solution was prepared using 0.1500 kg water 

 Using the definition of molality, we can find the 
number of moles of glucose in the solution 

solute

b

0.34 C
0.67 mol/kg

0.51 C kg/mol

T
m

K

 
  

 

glucose

solute

mol solute
0.67 mol/kg

kg solvent 0.1500 kg

n
m   
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Interactive Example 11.8 - Solution (Continued 2) 

 

 

 Thus, 0.10 mole of glucose has a mass of 18.00 g, and 
1.0 mole of glucose has a mass of 180 g (10×18.00 g) 

 The molar mass of glucose is 180 g/mol  

  glucose 0.67 mol/kg 0.1500 kg 0.10 moln  
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Freezing-Point Depression 

 When a solute is dissolved in a solvent, the 
freezing point of the solution is lower than that of 
the pure solvent 

 Water in a solution has lower vapor pressure than 
that of pure ice  

 As the solution is cooled, the vapor pressure of ice and 
that of liquid water will become equal  

 Temperature at this point is below 0°C, and the freezing 
point has been depressed 
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Figure 11.15 - Freezing-Point Depression: Model  

Ice in equilibrium with 
liquid water 

Ice in equilibrium with liquid 
water containing a dissolved 

solute 
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Equation for Freezing-Point Depression 

 
 

 ΔT - Freezing-point depression 

 Kf - Molal freezing-point depression constant 

 msolute - Molality of solute 

 Used to: 

 Ascertain molar masses 

 Characterize solutions  
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Exercise   

 Calculate the freezing point and boiling point of 
an antifreeze solution that is 50.0% by mass of 
ethylene glycol (HOCH2CH2OH) in water 

 Ethylene glycol is a nonelectrolyte 

Tf = 229.9°C 

Tb = 108.2°C 
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Interactive Example 11.10 - Determining Molar Mass by 
Freezing-Point Depression 

 A chemist is trying to identify a human hormone 
that controls metabolism by determining its molar 
mass 

 A sample weighing 0.546 g was dissolved in 15.0 g 
benzene, and the freezing-point depression was 
determined to be 0.240°C 

 Calculate the molar mass of the hormone 
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Interactive Example 11.10 - Solution 

 Kf for benzene is 5.12°C · kg/mol, so the molality 
of the hormone is: 

 

 hormone

f

0.240°C

5.12°C kg/mol

T
m

K


 



24.69  10  mol/kg 
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Interactive Example 11.10 - Solution (Continued 1) 

 The moles of hormone can be obtained from the 
definition of molality: 

 

 

Or 

 

 

2

solute

mol hormone
4.69  10  mol/kg = 

0.0150 kg benzene

 m

 2 4mol
mol hormone 4.69  10 0.0150 kg 7.04  10  mol

kg

  
    
 
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Interactive Example 11.10 - Solution (Continued 2) 

 Since 0.546 g hormone was dissolved, 7.04×10–4 
mole of hormone has a mass of 0.546 g, and 

 

 

 
 

 Thus, the molar mass of the hormone is 776 g/mol 

4

0.546 g

7.04  10  mol 1.00 mol




x

776x 
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Osmosis 

 Flow of solvent into solution through a 
semipermeable membrane  

 Semipermeable membrane: Permits solvent but not 
solute molecules to pass through 

 Osmotic pressure: Result of increased hydrostatic 
pressure on the solution than on the pure solvent  

 Caused by the difference in levels of the liquids at 
equilibrium  
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Figure 11.16 - Process of Osmosis  
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Preventing Osmosis  

 Apply pressure to the 
solution  

 Minimum pressure that 
stops the osmosis is equal to 
the osmotic pressure of the 
solution  
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Uses of Osmotic Pressure 

 Characterize solutions  

 Determine molar masses 

 A small concentration of solute produces a 
relatively large osmotic pressure 
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Understanding Osmotic Pressure  

 Equation that represents the dependence of 
osmotic pressure on solution concentration  

 
 

 Π - Osmotic pressure in atmospheres 

 M - Molarity of the solution 

 R - Gas law constant 

 T - Kelvin temperature 

MRT 
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Critical Thinking   

 Consider the following model of osmotic 
pressure: 
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Critical Thinking (Continued) 

 What if both sides contained a different pure 
solvent, each with a different vapor pressure?  

 What would the system look like at equilibrium?  

 Assume the different solvent molecules are able to 
pass through the membrane 
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Interactive Example 11.11 - Determining Molar Mass 
from Osmotic Pressure 

 To determine the molar mass of a certain protein, 
1.00×10–3 g of it was dissolved in enough water 
to make 1.00 mL of solution 

 The osmotic pressure of this solution was found to be 
1.12 torr at 25.0°C 

 Calculate the molar mass of the protein 
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Interactive Example 11.11 - Solution 

 We use the following equation: 

 
 

 In this case we have: 

  
 

 R = 0.08206 L · atm/K · mol 

 T = 25.0 + 273 = 298 K 

 

 

MRT 

31 atm
1.12 torr  1.47  10  atm

760 torr

    
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Interactive Example 11.11 - Solution (Continued 1) 

 Note that the osmotic pressure must be 
converted to atmospheres because of the units of 
R 

 Solving for M gives 

  

3
51.47  10  atm

6.01  10  mol/L
0.08206 L  atm/K  mol 298 K




  
 

M
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Interactive Example 11.11 - Solution (Continued 2) 

 Since 1.00×10–3 g protein was dissolved in 1 mL 
solution, the mass of protein per liter of solution 
is 1.00 g 

 The solution’s concentration is 6.01×10–5 mol/L 

 This concentration is produced from 1.00×10–3 g protein 
per milliliter, or 1.00 g/L 

 Thus 6.01×10–5 mol protein has a mass of 1.00 g 
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Interactive Example 11.11 - Solution (Continued 3) 

 

 

 

 The molar mass of the protein is 1.66×104 g/mol 

 This molar mass may seem very large, but it is 
relatively small for a protein  

5

1.00 g

6.01  10  mol 1.00 mol




x

41.66  10  g x
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Dialysis  

 Occurs at the walls of most animal and plant cells  

 Membranes permit the transfer of: 

 Solvent molecules  

 Small solute molecules and ions 

 Application 

 Use of artificial kidney machines to          
purify blood  
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Isotonic, Hypertonic, and Hypotonic Solutions  

 Isotonic solutions: Solutions with identical 
osmotic pressures 

 Intravenously administered fluids must be isotonic 
with body fluids  

 Hypertonic solutions - Have osmotic pressure 
higher than that of the cell fluids 

 Hypotonic solutions - Have osmotic pressure 
lower than that of the cell fluids  

 



Section 11.6 
Osmotic Pressure 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Red Blood Cells (RBCs) and Osmosis 

 RBCs in a hypertonic solution undergo crenation  

 Shrivel up as water moves out of the cells  
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Red Blood Cells (RBCs) and Osmosis (Continued) 

 RBCs in a hypotonic solution undergo hemolysis 

 Swell up and rupture as excess water flows into the 
cells  
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Interactive Example 11.12 - Isotonic Solutions 

 What concentration of sodium chloride in water is 
needed to produce an aqueous solution isotonic 
with blood (Π = 7.70 atm at 25°C)? 
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Interactive Example 11.12 - Solution 

 We can calculate the molarity of the solute from 
the following equation: 

 

 

 

 

 This represents the total molarity of solute particles 

 

  or  MRT M =
RT


 

  
7.70 atm

0.315 mol/L
0.08206 L  atm/K  mol 298 K

M  
 



Section 11.7 
Colligative Properties of Electrolyte Solutions 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Interactive Example 11.12 - Solution (Continued) 

 NaCl gives two ions per formula unit 

 Therefore, the concentration of NaCl needed is  

0.315 
0.1575 0.158 

2

M
M M 

+NaCl  Na  + Cl

0.1575 M 0.1575 M 0.1575 M 

0.315 M 
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Reverse Osmosis 

 Results when a solution in contact with a pure 
solvent across a semipermeable membrane is 
subjected to an external pressure larger than its 
osmotic pressure 

 Pressure will cause a net flow of solvent from the 
solution to the solvent  

 Semipermeable membrane acts as a molecular filter  

 Removes solute particles 
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Figure 11.20 - Reverse Osmosis 
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Desalination  

 Removal of 
dissolved salts 
from a solution  
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van’t Hoff Factor, i 

 Provides the relationship between the moles of 
solute dissolved and the moles of particles in 
solution 

 

 
 

 Expected value for i can be calculated for a salt by 
noting the number of ions per formula unit  
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Ion Pairing 

 Oppositely charged ions aggregate and behave as 
a single particle 

 Occurs in solutions 

 Example  

 Sodium and chloride ions in NaCl  
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Ion Pairing (Continued) 

 Essential in concentrated solutions  

 As the solution becomes more dilute, ions are spread 
apart leading to less ion pairing  

 Occurs in all electrolyte solutions to some extent 

 Deviation of i from the expected value is the 
greatest when ions have multiple charges 

 Ion pairing is important for highly charged ions  
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Table 11.6 - Expected and Observed Values of the van’t 
Hoff Factor for 0.05 m Solutions of Several Electrolytes 
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Ion Pairing in Electrolyte Solutions  

 Colligative properties are given by including the 
van’t Hoff factor in the necessary equation  

 For changes in freezing and boiling points 

 
 K - Freezing-point depression or boiling-point elevation 

constant for the solvent 

 For osmotic pressure 

T imK 

iMRT 
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Interactive Example 11.13 - Osmotic Pressure 

 The observed osmotic pressure for a 0.10 M 
solution of Fe(NH4)2(SO4)2 at 25°C is 10.8 atm 

 Compare the expected and experimental values for i 
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Interactive Example 11.13 - Solution 

 The ionic solid Fe(NH4)2(SO4)2 dissociates in water 
to produce 5 ions: 

 

 

 Thus, the expected value for i is 5 

    2H O 2+ 2

4 4 4 42 2
Fe NH SO Fe  + 2NH   2SO  
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Interactive Example 11.13 - Solution (Continued 1) 

 We can obtain the experimental value for i by 
using the equation for osmotic pressure: 

 

 

 Π = 10.8 atm 

 M = 0.10 mol/L 

 R = 0.08206 L · atm/K · mol 

 T = 25 + 273 = 298 K 

   or    iMRT i
MRT


  
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Interactive Example 11.13 - Solution (Continued 2) 

 Substituting these values into the equation gives: 

 

 

 
 

 The experimental value for i is less than the 
expected value, presumably because of ion 
pairing 

i
MRT




   
10.8 atm

0.10 mol/L 0.08206 L  atm/K  mol 298 K


 

4.4i 
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The Tyndall Effect  

 Scattering of light by particles 

 Used to distinguish between a suspension and a 
true solution 

 When a beam of intense light is projected: 

 The beam is visible from the side in a suspension 
 Light is scattered by suspended particles  

 The light beam is invisible is in a true solution 
 Individual ions and molecules dispersed in the solution are too small 

to scatter visible light  
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Figure 11.23 - The Tyndall Effect 
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Colloidal Dispersion or Colloids  

 Suspension of tiny particles in some medium 

 Can be either single large molecules or aggregates of 
molecules or ions ranging in size from 1 to 1000 nm 

 Classified according to the states of the dispersed 
phase and the dispersing medium 
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Table 11.7 - Types of Colloids 
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Stabilizing Colloids  

 Major factor - Electrostatic repulsions  

 A colloid is electrically neutral 

 Each center particle is surrounded by a layer of positive ions, 
with negative ions in the outer layer 

 When placed in an electric field, the center attracts from the 
medium a layer of ions, all of the same charge 

 Outer layer contains ions with                
the same charge that repel             
each other  
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Coagulation 

 Destruction of a colloid 

 Heating increases the velocities of the particles 
causing them to collide  

 Ion barriers are penetrated, and the particles can 
aggregate 

 Repetition of the process enables the particle to settle out 

 Adding an electrolyte neutralizes the adsorbed ion 
layers  
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Examples of Coagulation 

 Colloidal clay particles in seawater coagulate due 
to high salt content  

 Removal of soot from smoke  

 The suspended particles are removed when smoke is 
passed through an electrostatic precipitator 

 


