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Figure 10.1 - Schematic Representations of the Three 
States of Matter 
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Intramolecular and Intermolecular Bonding 

 Intramolecular bonding - Occurs within molecules 

 Condensed states of matter - Liquids and solids 

 Forces involved 

 Covalent bonding  

 Ionic bonding 

 Intermolecular bonding: Occurs between molecules 
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Changes in States 

 When a substance changes from solid to liquid to 
gas, the molecules remain intact 

 Caused by the changes in the forces among the 
molecules and not within the molecules 

 When energy is added to ice, the motion of the 
molecules increases 

 Results in greater movement and disorder characteristic of 
liquid water 
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Changes in States (Continued) 

 When more energy is added to water, gaseous state is 
eventually reached 

 Intermolecular distance increases and intermolecular 
interaction decreases 

 More energy is required to overcome the covalent 
bonds and decompose the water molecules into their 
component atoms 
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Dipole–Dipole Forces 

 Forces that act between polar molecules 

 Dipole–dipole attraction: Electrostatic attraction 
between molecules with dipole moments 

 Molecules orient themselves in a way that the positive 
and negative ends are close to each other 

 In a condensed state, dipoles find the best 
compromise between attraction and repulsion 
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Characteristics of Dipole–Dipole Forces 

 Approximately 1% as strong as 
covalent or ionic bonds 

 Strength of the forces 
decreases as the distance 
between the dipoles increases 
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Hydrogen Bonding 

 Significantly strong dipole–dipole forces 

 Prevalent in molecules that have a hydrogen 
atom bound to a highly electronegative atom 

 Causative factors 

 Polarity of the bond 

 Proximity of the dipoles 

 Influenced by the size of the hydrogen atom 

 Influences physical properties of molecules 
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Figure 10.3 - Hydrogen Bonding in Water 
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Figure 10.4 - Boiling Points of the Covalent Hydrides of 
the Elements in Groups 4A, 5A, 6A, and 7A 
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London Dispersion Forces  

 Forces that exist among noble gas atoms and 
nonpolar molecules 

 An accidental instantaneous dipole that occurs in 
an atom can induce a similar dipole in a 
neighboring atom 

 Leads to an interatomic attraction that is weak and 
short-lived 

 Can be significant for large atoms 
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London Dispersion Forces (Continued) 

 Polarizability - Indicates the ease with which the 
electron cloud of an atom can be distorted to give 
a dipolar charge distribution 

 As the atomic number increases, the number of 
electrons increases 

 Increases the probability of the occurrence of momentary 
dipole interactions 

 Used by nonpolar molecules to attract each other 
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Critical Thinking 

 You have learned the difference between 
intermolecular forces and intramolecular bonds  

 What if intermolecular forces were stronger than 
intramolecular bonds?  

 What differences could you observe in the world? 
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Liquids 

 Possess low compressibility, lack rigidity, and have 
high density compared with gases 

 Surface tension: Resistance of a liquid to an 
increase in its surface area 

 Liquids with large intermolecular forces tend to have 
high surface tensions 
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Liquids (Continued) 

 Polar liquids exhibit capillary action 

 Capillary action: Spontaneous rising of a liquid in a 
narrow tube 

 Cohesive forces - Intermolecular forces among the 
molecules of the liquid 

 Adhesive forces - Forces between the liquid molecules and 
the walls of the container  
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Concave Meniscus Formed by Polar Water 

 Adhesive forces toward glass are stronger than 
cohesive forces in the liquid 
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Convex Meniscus Formed by Nonpolar Liquid Mercury 

 Cohesive forces in the liquid are stronger than 
adhesive forces toward glass 

Copyright © Cengage Learning. All rights reserved 19 



Section 10.2 
The Liquid State 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Viscosity 

 Measure of a liquid’s resistance to flow 

 Liquids with large intermolecular forces and 
complex molecules tend to be highly viscous  

 Example - Glycerol and grease 
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Structural Model for Liquids 

 Have strong intermolecular forces and significant 
molecular motions  

 Contain a large number of regions  

 Arrangement of the components are similar to those 
that are present in solids, but with more disorder 

 Holes are present in a few regions 

 Regions are subject to rapid fluctuations 
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Classification of Solids 

 Amorphous solids: Have considerable disorder in 
their structures 

 Crystalline solids: Characterized by highly regular 
arrangement of components 

 Positions of components are represented by lattices 

 Lattice: Three-dimensional system of points designating 
positions of components that make up the substance 

 Unit cell: Smallest repeating unit of a lattice 
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Figure 10.9 - Three Cubic Unit Cells and the 
Corresponding Lattices 
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Figure 10.9 - Three Cubic Unit Cells and the 
Corresponding Lattices (Continued) 
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X-Ray Analysis of Solids 

 X-ray diffraction: Helps determine the structures 
of crystalline solids 

 Diffraction occurs due to: 

 Constructive interference when parallel beam waves 
are in phase  

 Destructive interference when waves are out of phase 
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Bragg Equation 

 Used to determine interatomic spacings 

 Consider two in-phase waves being reflected by 
atoms in two different layers in a crystal 
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Bragg Equation (Continued 1) 

 If the sum of xy and yz gives the extra distance 
traveled by the lower wave, the waves will be in phase 
after reflection if 

 

 n is an integer 

 λ is the wavelength of the X rays 

 

 

 

 

 +  = λ             (10.1)xy yz n
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Bragg Equation (Continued 2) 

 Using trigonometry, it can be shown that 

 

 

 d is the distance between the atoms 

 θ is the angle of incidence and reflection 

  Combining equations 10.1 and 10.2 gives Bragg’s 
equation 

λ  2  sin n d 

 +  = 2  sin         (10.2)xy yz d θ
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Diffractometer 

 Used to conduct X-ray analysis of crystals 

 Rotates the crystal based on the X-ray beam 

 Collects data produced by the scattering of X rays 
from the various planes of atoms in the crystal 

 Helps gather data on bond lengths and angles  
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Interactive Example 10.1 - Using the Bragg Equation 

 X rays of wavelength 1.54 Å were used to analyze 
an aluminum crystal 

 A reflection was produced at θ = 19.3 degrees 

 Assuming n = 1, calculate the distance d between the 
planes of atoms producing this reflection 
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Interactive Example 10.1 - Solution 

 To determine the distance between the planes, 
use the Bragg equation 

 n = 1 

 λ = 1.54 Å 

 θ = 19.3 degrees  

 

 
  
  

1 1.54 Åλ
= = = 2.33Å = 233pm

2 sin 2 0.3305

n
d

θ
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Types of Crystalline Solids 

 Ionic solids: Possess ions at the lattice points that 
describe the structure of the solid 

 Molecular solids: Possess discrete covalently 
bonded molecules at the lattice points 

 Atomic solids: Possess atoms at the lattice points 
that describe the structure of the solid 
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Figure 10.22 - Examples of Three Types of Crystalline 
Solids 
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Classification of Atomic Solids 

 Metallic solids - Possess a special type of 
delocalized nondirectional covalent bonds 

 Network solids - Possess atoms bonded by strong 
directional covalent bonds 

 Bonds lead to giant molecules of atoms 

 Group 8A solids - Possess noble gas elements that 
are attracted to each other by London dispersion 
forces 
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Closest Packing Model 

 Closest packing arrangement 

 Characterized by layers of uniform hard spheres that 
efficiently use available space 

 Each sphere is surrounded by six others 

 Types of arrangement 

 The aba arrangement 

 The abc arrangement 
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The aba Arrangement 

 Spheres in every third layer lie directly over 
spheres in the first layer 

 Resulting structure is called the hexagonal 
closest packed (hcp) structure 
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Figure 10.14 - Hexagonal Closest Packing 
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 No spheres in the third layer lie over ones in the 
first layer 

 Resulting structure is called the cubic closest 
packed (ccp) structure   

 

The abc Arrangement 
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Figure 10.15 - Cubic Closest Packing 
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Nearest Neighbors of a Sphere 

 Each sphere has 12 
equivalent nearest 
neighbors 
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Net Number of Spheres in a Face-Centered Cubic Unit 
Cell 

 A unit cell is defined by the centers of the spheres 
on the corners of the cube 

 Net number of spheres in a face-centered cubic 
unit would be 
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1 1
8× + 6× = 4

8 2

   
   
   

Number of 
corners in a 
cube 

Number of 
spheres that 
lie inside a 
unit cell 

Number 
of faces 
in a cube 

Number of central 
spheres that lie 
inside a unit cell 
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Interactive Example 10.2 - Calculating the Density of a 
Closest Packed Solid 

 Silver crystallizes in a cubic closest packed 
structure 

 The radius of a silver atom is 144 pm 

 Calculate the density of solid silver 
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Interactive Example 10.2 - Solution 

 Density is mass per unit volume 

 We need to know how many silver atoms occupy a 
given volume in the crystal 

 The structure is cubic closest packed, which means the 
unit cell is face-centered cubic 

 We must find the volume of this unit cell for silver and 
the net number of atoms it contains 
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Interactive Example 10.2 - Solution (Continued 1) 

 Note that in this structure the atoms touch along 
the diagonals for each face and not along the 
edges of the cube 

 Length of the diagonal is r + 2r + r, or 4r 

 We use this fact to find the length along the edge of 
the cube by the Pythagorean theorem  
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Interactive Example 10.2 - Solution (Continued 2) 

 

 

 

 

 

 Since r = 144 pm for a silver atom, 

 

 
 

 

 

 

 
22 2

2 2

2 2

2

+ = 4

     2 = 16

       = 8

        = 8 = 8

d d r

d r

d r

d r r

  = 144 pm 8 = 407 pmd
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Interactive Example 10.2 - Solution (Continued 3) 

 The volume of the unit cell is d3, which is (407 
pm)3, or 6.74×107 pm3 

 Converting this to cubic centimeters,  

 

 

 

 

 

 
 

 

 

 

3
 –10

7 3 –23 31.00 ×  10 cm
6.74  ×  10 pm × = 6.74 ×  10 cm

pm

 
 
 
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Interactive Example 10.2 - Solution (Continued 4) 

 Since we know that the net number of atoms in 
the face-centered cubic unit cell is 4, we have 4 
silver atoms contained in a volume of 6.74×10 –23 

cm3 

 Therefore, the density is  

    23

 –23 3

3

4 atoms 107.9 g / mol 1 mol / 6.022 × 10 atomsmass
Density = =

volume 6.74 × 10 cm

             = 10.6 g / cm

 
 
 
 
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Bonding Models for Metals 

 A successful bonding model for metals must 
consider: 

 Malleability 

 Ductility 

 Efficient and uniform conduction of heat and 
electricity  
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Electron Sea Model 

 Envisions a regular array of metal cations in a sea 
of valence electrons 

 Mobile electrons conduct heat and electricity  

 Metal ions freely move around as the metal is 
hammered into a sheet or drawn into a wire  
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Figure 10.8 (a) and (b) - Depiction of Electron Sea 
Model 

Representation of an alkali metal (Group 
1A) with one valence electron 

Representation of an alkaline earth metal 
(Group 2A) with two valence electrons 
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Band Model or Molecular Orbital (MO) Model 

 Electrons are assumed to travel around the metal 
crystal in molecular orbitals formed from the 
valence atomic orbitals of the metal atoms 
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Figure 10.19 - Molecular Orbital Energy Levels Produced 
When Various Numbers of Atomic Orbitals Interact 
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Figure 10.20 - Representation of Energy Levels in a 
Magnesium Crystal  
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Metal Alloys 

 Alloy: Substance that contains a mixture of 
elements and possesses metallic properties 

 Substitutional alloy: Some host metal atoms are 
replaced by other metal atoms of similar size 

 Interstitial alloy: Some of the interstices in the closest 
packed metal structure are occupied by small atoms 
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Figure 9.21 - Two Types of Alloys 
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Influence of Carbon on the Properties of Steel 

 Mild steel - Contains less than 0.2% carbon  

 Malleable and ductile 

 Used for nails, cables, and chains 

 Medium steel - Contains 0.2 to 0.6% carbon  

 Used in rails and structural steel beams 

 High-carbon steel - Contains 0.6 to 1.5% carbon 

 Tough and hard 

 Used for springs, tools, and cutlery 
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Network Solids 

 Atomic solids that contain directional covalent 
bonds  

 Form solids that are viewed as giant molecules  

 Properties 

 Brittle in nature 

 Ineffective conductors of heat and electricity  

 

 



Section 10.5 
Carbon and Silicon: Network Atomic Solids 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Diamond 

 Each carbon atom is surrounded by a tetrahedral 
arrangement of other carbon atoms to form a 
huge molecule 

 Structure fits the characteristics of the localized 
electron model 

 Covalent bonds result in a stable structure  

 Formed by the overlap of sp3 hybridized carbon atomic 
orbitals  
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Figure 10.22 (a) - The Structure of Diamond 
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Diamond (Continued) 

 Structure according to the MO model 

 A large gap between the filled and empty levels exists 

 Electron transfer is difficult 

 Diamond is not expected to be a good electrical conductor 

 Used in industrial cutting implements 

 Graphite can be converted to diamond by applying 
150,000 atm of pressure at 2800

ₒ
C 
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Figure 10.23 (a) - Partial Representation of the 
Molecular Orbital Energies in Diamond 
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Graphite 

 Slippery, black, and a conductor of heat and 
electricity  

 Structure is based on layers of carbon atoms 
arranged in fused six-membered rings  

 Each carbon atom in a layer is surrounded by three 
other carbon atoms in a trigonal planar arrangement 
with 120-degree bond angles 
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Graphite (Continued) 

 sp2 hybridization is predicted by the localized 
electron model 
 Three sp2 orbitals on each carbon atom form σ bonds 

with three other carbon atoms 

 One 2p orbital on each carbon remains unhybridized 
and is perpendicular to the plane  

 Used as a lubricant in locks 
 Slipperiness is due to the strong bonding within the 

layers of carbon atoms rather than between the layers  
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Figure 10.22 (b) - The Structure of Graphite 
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Figure 10.24 (a) and (b) - The p Orbitals and the π-
Bonding Network in Graphite 
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Silicon  

 An important constituent of the compounds that 
form the earth’s crust  

 Stable silicon compounds involve chains with 
silicon–oxygen bonds  

 Silica (SiO2): Fundamental silicon–oxygen compound 

 Structure 

 Silicon atom satisfies the octet rule by forming single 
bonds with four oxygen atoms  
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Figure 10.26 - Structure of Quartz 
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Silicates 

 Compounds related to silica  

 Based on interconnected SiO4 tetrahedra 

 Found in rocks, soils, and clays 

 Possess O/Si ratios greater than 2:1 and contain 
silicon–oxygen anions 

 Cations are required to balance the excess negative 
charge to form neutral silicates 
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Silicates (Continued) 

 Glass: Amorphous solid that is formed when silica 
is heated above 1600°C and cooled rapidly 

 Homogeneous, noncrystalline frozen solution  

 Common glass results when substances like Na2CO3 
are added to the silica melt and then cooled  

 Properties vary based on the additives 
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Figure 10.28 (a) and (b) - Two-Dimensional 
Representations of Quartz Crystal and Quartz Glass 

Quartz Crystal Quartz Glass 
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Figure 10.5 - Compositions of Some Common Types of 
Glass 
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Ceramics 

 Made from clays and hardened by firing at high 
temperatures 

 Nonmetallic materials that are strong, brittle, and 
resistant to heat and attack by chemicals 

 Heterogeneous in nature 
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Structure of Clay 

 Formed by the weathering action of water and 
carbon dioxide on the mineral feldspar 

 Feldspar - An aluminosilicate that weathers to form 
kaolinite 

 Kaolinite - Consists of tiny thin platelets with the empirical 
formula Al2Si2O5(OH)4 

 Platelets interlock as the clay dries  

 During firing, silicates and cations form a glass that 
binds the crystals of kaolinite 
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Uses of Ceramics 

 Construction of jet and automobile engines 

 Flexible ceramics can be obtained by adding small 
amounts of organic polymers  

 Organic polymers are used to produce durable engine 
parts, flexible superconducting wires and 
microelectronic devices, and prosthetic devices 
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Semiconductors 

 Conduct only a slight electric current at room 
temperature 

 Show increased conductivity at higher temperatures 

 Types  

 n-type semiconductor 

 Substance whose conductivity is increased by doping the 
element with atoms that have more valence electrons than 
the atoms in the host crystal  
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Semiconductors (Continued) 

 p-type semiconductor: Semiconductors are doped 
with atoms that have fewer valence electrons than the 
atoms in the host crystal 

 Substance becomes a better conductor 

 A p-type and an n-type semiconductor can be 
connected to form a p–n junction 

 Makes an excellent rectifier 

 Rectifier - Device that produces a pulsating direct current 
from alternating current 
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Figure 10.30 - Energy-Level Diagrams for an N-Type and 
a P-Type Semiconductor 
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P–N Junction 

 A small number of electrons migrate from the n-
type region into the p-type region 

 The migrations place a negative charge on the p-type 
region and a positive charge on the n-type region 

 Contact potential prevents further migration 

 Contact potential - Charge buildup 
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Figure 10.31 (a) - Charge Carriers in the P-Type and N-
Type Regions 
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Figure 10.31 (b) and (c) - Reverse and Forward Bias 

Reverse bias 

Forward bias 
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Molecular Solids 

 Characterized by strong covalent bonding within 
molecules and weak bonding between molecules 

 Intermolecular forces depend on the nature of 
the molecules 

 Molecules that do not have a dipole moment possess 
London dispersion forces 

 Molecules with dipole moments have greater 
intermolecular forces when hydrogen bonding is 
possible 

 



Section 10.7 
Ionic Solids 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Ionic Solids 

 Stable, high-melting substances held together by 
the strong electrostatic forces that exist between 
oppositely charged ions  

 Structure of binary ionic solids can be explained 
by closest packing of spheres 

 Spheres are packed to: 

 Maximize electrostatic attractions among oppositely 
charged ions 

 Minimize repulsions among ions with like charges 

Copyright © Cengage Learning. All rights reserved 82 



Section 10.7 
Ionic Solids 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Types of Holes in Closest Packed Structures 

 Trigonal holes - Formed by three    
spheres in the same layer 

 Never occupied in binary ionic           
compounds 

 Tetrahedral holes 

 Formed when a sphere is located in the dimple of 
three spheres in an adjacent layer 
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Types of Holes in Closest Packed Structures (Continued) 

 There are twice as many tetrahedral holes as packed 
anions in a closest packed                
structure 

 Octahedral holes 
 Formed between two sets of three spheres in 

adjoining layers of the closest        
packed structures 

 Closest packed structures contain              
the same number of octahedral holes as packed 
spheres 
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Figure 10.34 (a), (b), and (c) - Tetrahedral Holes 

The location (red X) of a 
tetrahedral hole 

One of the 
tetrahedral holes 
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Figure 10.35 - Octahedral Holes 

The locations (gray X) of the octahedral 
holes 

Representation of the unit cell for solid 
NaCl 
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Interactive Example 10.3 - Determining the Number of 
Ions in a Unit Cell 

 Determine the net number of Na+ and Cl– ions in 
the sodium chloride unit cell 
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Interactive Example 10.3 - Solution 

 The Cl– ions are cubic closest packed and thus 
form a face-centered cubic unit cell 

 There is a Cl– ion on each corner and one at the 
center of each face of the cube 

 The net number of Cl– ions present in a unit cell is 

 
1 1

8 + 6 = 4
8 2

   
   
   
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Interactive Example 10.3 - Solution (Continued 1) 

 The Na+ ions occupy the octahedral holes located 
in the center of the cube and midway along each 
edge 

 The Na+ ion in the center of the cube is contained 
entirely in the unit cell, whereas those on the edges 
are shared by four unit cells 
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Interactive Example 10.3 - Solution (Continued 2) 

 Since the number of edges in a cube is 12, the net 
number of Na+ ions present is: 

 

 

 We have shown that the net number of ions in a 
unit cell is 4 Na+ ions and 4 Cl– ions 

 Agrees with the 1:1 stoichiometry of sodium chloride 

 

 

 
1

1 1 +12 = 4
4

 
 
 
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Table 10.7 - Types and Properties of Solids 
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Interactive Example 10.4 - Types of Solids 

 Using the Table 10.7, classify each of the following 
substances according to the type of solid it forms 

a. Gold 

b. Carbon dioxide 

c. Lithium fluoride  

d. Krypton  
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Interactive Example 10.4 - Solution 

a. Solid gold is an atomic solid with metallic 
properties 

b. Solid carbon dioxide contains nonpolar carbon 
dioxide molecules and is a molecular solid 

c. Solid lithium fluoride contains Li+ and F– ions and 
is a binary ionic solid 
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Interactive Example 10.4 - Solution (Continued) 

d. Solid krypton contains krypton atoms that can 
interact only through London dispersion forces 

 It is an atomic solid but has properties characteristic of 
a molecular solid with nonpolar molecules 
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Vaporization (Evaporation)  

 Molecules of a liquid escape the liquid’s surface 
to form a gas  

 Heat of vaporization (ΔHvap ): Energy required to 
vaporize 1 mole of a liquid at a pressure of 1 atm 

 Endothermic in nature  
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Figure 10.36 (a) and (b) - Behavior of a Liquid in a 
Closed Container 
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Vapor Pressure  

 Equilibrium: The point at which no further net 
change occurs in the amount of liquid or vapor 

 Rate of condensation equals rate of evaporation 

 Condensation: Process by which gases become liquids 

 Equilibrium vapor pressure: Pressure of vapor at 
equilibrium 
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Figure 10.37 - Rates of Condensation and Evaporation 
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Measurement of Vapor Pressure  

 Vapor pressure can be measured using a simple 
barometer  

 When the system reaches equilibrium, the vapor 
pressure can be determined from the change in the 
height of the mercury column 

  Pvapor = Patmosphere – PHg column 



Section 10.8 
Vapor Pressure and Changes of State 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Figure 10.38 - Measuring Vapor Pressure 
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Critical Thinking  

 You have seen that the water molecule has a bent 
shape and therefore is a polar molecule 

 This accounts for many of water’s interesting 
properties 

 What if the water molecule was linear?  

 How would this affect the properties of water, such as its 
surface tension, heat of vaporization, and vapor pressure?  

 How would life be different? 
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Vapor Pressure and Liquids 

 Liquids with high vapor pressures are volatile 

 Evaporation occurs rapidly in an open environment 

 The size of the intermolecular forces in a liquid 
determines its vapor pressure 

 Substances with large molar masses have relatively 
low vapor pressures 
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Vapor Pressure and Liquids (Continued) 

 Vapor pressure increases significantly with 
temperature 

 A molecule must have sufficient kinetic energy to 
overcome intermolecular forces  
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Vapor Pressure versus Temperature 

 Produces a straight line when plotted on a graph 

 

 

 T - Temperature in Kelvin  

 ΔHvap - Enthalpy of vaporization 

 R - Universal gas constant  

 C - Constant characteristic of a given liquid  

 ln - Natural logarithm of the vapor pressure  

 

 

  vap

vap

Δ 1
ln = – + (10.4)

H
P C      

R T

 
 
 
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Vapor Pressure versus Temperature (Continued) 

 Equation 10.4 is the equation for a straight line of 
the form y = mx + b 

 

 

 

vap

vap

 ln ( )

1
x 

 slope = –

 intercept = C

y P

T

H
m

R

b









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Example 10.5 - Determining Enthalpies of Vaporization 

 Using the plots in the figure          
determine whether water       
or diethyl ether has the          
larger enthalpy of         
vaporization 
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Example 10.5 - Solution 

 When ln(Pvap) is plotted versus 1/T, the slope of 
the resulting straight line is 

 The slopes of the lines for water and diethyl ether 
are both negative, as expected, and that the line 
for ether has the smaller slope 

 Ether has the smaller value of ΔHvap  

 This makes sense because the hydrogen bonding in water 
causes it to have a relatively large enthalpy of vaporization 

vap



H

R
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The Clausius–Clapeyron Equation 

 When the values of ΔHvap and Pvap at one 
temperature are known, it is possible to calculate 
the value of Pvap at another temperature  

 Assume that C does not depend on temperature 

 At temperatures T1 and T2 

 
1 2

vap vap

vap,T vap,T

1 2

ln ( ) +  =  = ln ( ) + 
H H

P C P
RT RT

 
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The Clausius–Clapeyron Equation (Continued) 

 Rearranging the equation gives 

 

 

 

 Pvap = vapor pressure 

 ΔHvap = enthalpy of vaporization 

 R = Universal gas constant 

 T = temperature (in Kelvin) 
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2

vap, vap

vap, 2 1

Δ 1 1
ln =  – 

T

T

P H

P R T T

   
    
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Interactive Example 10.6 - Calculating Vapor Pressure 

 The vapor pressure of water at 25°C is 23.8 torr, 
and the heat of vaporization of water at 25°C is 
43.9 kJ/mol 

 Calculate the vapor pressure of water at 50°C 
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Interactive Example 10.6 - Solution 

 We will use the following equation: 

 

 

 For water we have  

 Pvap,T1
 = 23.8 torr 

 T1 = 25 + 273 = 298 K T2 = 50 + 273 = 323 K 

 ΔHvap = 43.9 kJ/mol = 43,900 J/mol 

 R = 8.3145 J/K · mol 

 

1

2

vap, vap

vap, 2 1

Δ 1 1
ln =  – 

T

T

P H

P R T T

   
    

  



Section 10.8 
Vapor Pressure and Changes of State 

Copyright ©2017 Cengage Learning. All Rights Reserved. 

Interactive Example 10.6 - Solution (Continued) 

 

 

 

 

 Taking the antilog of both sides gives 

 

2vap,

23.8 torr 43,900 J/mol 1 1
ln =  – 

 (torr) 8.3145 J/K  mol 323 K 298 K

   
       TP

2vap,

23.8
ln = 1.37

 

 
 

 
 TP

2

2

vap,

vap,

23.8
=  0.254

93.7 torr

 



T

T

P

P  
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Sublimation 

 Process in which solids change to gases without 
passing through the liquid state 

 Occurs with dry ice and iodine 
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Changes of State 

 Heating curve: Plot of temperature versus time 
for a process where energy is added at a constant 
rate 

 When a solid is heated, it melts to form a liquid 

 If the heating continues, it will eventually form the vapor 
phase 

 Heat of fusion (enthalpy of fusion): Change in 
enthalpy at the melting point of a solid 
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Figure 10.42 - Heating Curve for a Specific Quantity of 
Water 
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Table 10.9 - Melting Points and Enthalpies of Fusion for 
Several Representative Solids 
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Melting Point 

 The temperature at which 
the solid and liquid have 
identical vapor pressures  
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Figure 10.44 - Interaction of Solid and Liquid Water in 
the Vapor State  
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Temperature and Vapor Pressure - Case 1 

 Temperature at which the vapor pressure of the 
solid is greater than that of the liquid 

 The solid releases vapor, attempting to achieve 
equilibrium 

 The liquid attempts to achieve equilibrium by 
absorbing vapor 

 Net effect - Conversion from solid to liquid through 
the vapor phase 

 Temperature would be above the melting point of ice 
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Temperature and Vapor Pressure - Case 2 

 Temperature at which vapor pressure of the solid 
is less than that of the liquid 

 Liquid will disappear, and the amount of ice will 
increase 

 Solid will achieve equilibrium with the vapor 

 Temperature should be below the melting point of ice 
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Temperature and Vapor Pressure - Case 3 

 Temperature at which the vapor pressures of the 
solid and liquid are identical 

 Coexist in the apparatus at equilibrium with the vapor 

 Normal melting point: Temperature at which the 
vapor pressures of the solid and liquid states are 
identical at 1 atmosphere of pressure 

 Represents the freezing point that enables existence of solid 
and liquid states 
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Temperature and Vapor Pressure - Case 3 (Continued 1) 

 Normal boiling point 

 Temperature at which the 
vapor pressure of the liquid is 
1 atmosphere 

 Changes of state do not 
always occur at the 
boiling or melting point 
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Temperature and Vapor Pressure - Case 3 (Continued 2) 

 Supercooled water remains in the liquid state below 
0°C and 1 atm of pressure 

 Water can be superheated if it is heated rapidly 

 Vapor pressure in the liquid is greater than atmospheric 
pressure 

 Bubbles formed burst before reaching the surface, resulting 
in bumping 
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Phase Diagram 

 Convenient method of representing the phases of 
a substance as a function of      
temperature and pressure 

 Phase diagram of water 
 Tm - Normal melting point 

 T3 and P3 - Triple point 

 Tb - Normal boiling point 

 Tc - Critical temperature 

 Pc - Critical pressure 
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Phase Diagram (Continued) 

 Triple point: Temperature at which all three 
phases exist simultaneously 

 Critical point: Defined by critical pressure and 
temperature 

 Critical pressure: Pressure required to produce 
liquefaction at the critical temperature  

 Critical temperature: The temperature above which 
vapor cannot be liquefied, irrespective of the 
pressure applied  
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Phase Diagram for Water 

 Describes a closed system 

 At point X, ice is subjected 
to increased pressure at 
constant temperature 

 Solid/liquid line is crossed as 
the pressure is increased 
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Phase Diagram for Water - Observations  

 The solid/liquid boundary line has a negative 
slope 

 At the melting point, liquid and solid are in 
dynamic equilibrium  
 When pressure is applied, the volume is reduced 

 A given mass of ice has more volume at 0°C than the 
same mass of water in liquid state  

 Freezing point of water is less than 0°C when 
external pressure is greater than 1 atm 
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Phase Diagram for Water - Applications 

 Ice skating 
 Narrow blades of skates exert a large amount of 

pressure  

 Frictional heat caused when skates moves over ice 
contributes to further melting of ice 

 As the blades pass by, the liquid refreezes 

 Low density of ice  
 Causes ice formed on rivers and lakes to float, and this 

helps prevent water bodies from freezing in the winter 
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Table 10.10 - Boiling Point of Water at Various 
Locations 
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Critical Thinking   

 Ice is less dense than liquid water, as evidenced 
by the fact that ice floats in a glass of water 

 What if ice was more dense than liquid water?  

 How would this affect the phase diagram for water? 
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Figure 9.49 - Phase Diagram for Carbon Dioxide 

 The liquid state does not 
exist at a pressure of 1 
atm 

 Solid/liquid line has a 
positive slope 
 Density of solid carbon 

dioxide is greater than 
that of liquid carbon 
dioxide 
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Phase Diagram for Carbon Dioxide - Applications  

 Carbon dioxide is used in fire extinguishers 

 Liquid released from the extinguisher into the 
environment at 1 atm immediately changes to a vapor 

 Dry ice 

 A convenient refrigerant as it does not undergo the 
liquid phase under normal atmospheric conditions  

 

 

 

 


