
Survey of Accounting, 9e

Carl S. Warren and Amanda G. Farmer

Chapter 12

Differential Analysis and Product Pricing

Learning Objectives

- Describe differential analysis for managerial decision making
- Apply differential analysis for deciding whether to:
 - Lease or sell
 - Discontinue segment or product
 - Manufacture or purchase
 - Replace a fixed asset
 - Process further or sell
 - Sell at a special price

Learning Objectives (continued)

- Determine the selling price of a product, using the total cost concept
- Describe and illustrate the use of contribution margin per unit of production constraint for managerial decision making and performance analysis

Learning Objective 1

Describe differential analysis for managerial decision making

Managerial Decision Making

- Involves choosing between alternative courses of action
- Managerial decision-making process varies depending on the type of decision
- Accounting facilitates managerial decision making
 - Gathers relevant information for managerial decisions
 - Reports this information to management
 - Provides management feedback on the results of the decisions

Exhibit 1: Managerial Decision Making

Differential Revenue, Differential Cost, and Differential Income

Differential revenue

 Amount of increase or decrease in revenue that is expected from a course of action as compared to an alternative

Differential cost

 Amount of increase or decrease in cost that is expected from a course of action as compared to an alternative

Differential income (or loss)

Difference between the differential revenue and the differential costs

Differential Analysis

- Focuses on the effect of alternative courses of action on revenues and costs
 - Sometimes called incremental analysis
- Sunk costs are incurred in the past and are irrelevant
- Reporting format is as follows:

Differential revenue from alternatives:		
Revenue from alternative A	\$XXX	
Revenue from alternative B	(XXX)	
Differential revenue		\$ XXX
Differential cost of alternatives:		
Cost of alternative A	\$XXX	
Cost of alternative B	(XXX)	
Differential cost		(XXX)
Net differential income or loss from alternatives		\$ XXX

Learning Objective 2

Apply differential analysis for deciding whether to:

- Lease or sell
- Discontinue segment or product
- Manufacture or purchase
- Replace a fixed asset
- Process further or sell
- Sell at a special price

Applying Differential Analysis

- Differential analysis is applied for the following decisions:
 - Leasing or selling equipment
 - Discontinuing an unprofitable segment or product
 - Manufacturing or purchasing a needed part
 - Replacing fixed assets
 - Processing further or selling a product
 - Accepting additional business at a special price

Lease or Sell

- Management may lease or sell a piece of equipment that is no longer needed
- Karnes Company is considering leasing or selling the equipment
 - Original cost of equipment is \$200,000
 - Accumulated depreciation is \$120,000
 - Alternatives
 - Lease option: Total revenue for five-year lease of \$160,000 less \$35,000 for estimated repairs, taxes, etc.
 - Sell option: Sale price of \$100,000 less 6% commission on sales

Exhibit 3: Differential Analysis Report—Lease or Sell

Lease or Sell Equipment Differential Analysis Report		
Differential revenue from alternatives:		
Revenue from lease	\$160,000	
Revenue from sale	(100,000)	
Differential revenue from lease		\$ 60,000
Differential cost of alternatives:		
Repair, insurance, and property tax expenses from lease	\$ 35,000	
Commission expense on sale (\$100,000 $ imes$ 6%)	(6,000)	
Differential cost of lease		(29,000)
Net differential income from the lease alternative		\$31,000

Exhibit 4: Traditional Analysis Report—Lease or Sell

Lease or Sell Equipment			
Traditional Analysis Rep	oort		
Lease alternative:			
Revenue from lease		\$ 160,000	
Depreciation expense for remaining five years	\$80,000		
Repair, insurance, and property tax expenses	35,000	(115,000)	
Net gain			\$ 45,000
Sell alternative:			
Sales price		\$ 100,000	
Book value of equipment	\$80,000		
Commission expense	6,000	(86,000)	
Net gain			(14,000)
Net differential income from the lease alternative			\$31,000

Discontinuing a Segment or Product

- Avoids loss generated by a product, department, branch, territory, or other segment
- Eliminates all of the segment's variable costs
- May not eliminate fixed costs such as depreciation, insurance, and property taxes
 - Company's income may decrease rather than increase if the unprofitable segment is discontinued

Condensed Income Statement

Condensed income statement for Montana Wheat Cereal Co.

Conde	ensed Income	Statement		
	Corn Flakes	Toasted Oats	Bran Flakes	Total Company
Sales	\$ 500,000	\$ 400,000	\$100,000	\$1,000,000
Cost of goods sold:				
Variable costs	\$(220,000)	\$(200,000)	\$ (60,000)	\$ (480,000)
Fixed costs	(120,000)	(80,000)	(20,000)	(220,000
Total cost of goods sold	\$(340,000)	\$(280,000)	\$ (80,000)	\$ (700,000
Gross profit	\$ 160,000	\$ 120,000	\$ 20,000	\$ 300,000
Operating expenses:				
Variable expenses	\$ (95,000)	\$ (60,000)	\$ (25,000)	\$ (180,000
Fixed expenses	(25,000)	(20,000)	(6,000)	(51,000
Total operating expenses	\$(120,000)	\$ (80,000)	\$ (31,000)	\$ (231,000
Operating income (loss)	\$ 40,000	\$ 40,000	\$ (11,000)	\$ 69,000

 Since Bran Flakes incurred an operating loss of \$11,000, the company is considering discontinuing it

Exhibit 6: Differential Analysis Report—Discontinue an Unprofitable Segment

Discontinue Brand Flakes		
Differential Analysis Report		
Differential revenue from annual sales of Bran Flakes:		
Revenue from sales		\$100,000
Differential cost of annual sales of Bran Flakes:		
Variable cost of goods sold	\$60,000	
Variable operating expenses	25,000	(85,000)
Annual differential income from sales of Bran Flakes		\$15,000

Exhibit 7: Income Statement without Bran Flakes

Montana Wheat Cereal Co.
Condensed Income Statement

	Corn Flakes	Toasted Oats	Total Company
Sales	\$ 500,000	\$ 400,000	\$ 900,000
Cost of goods sold:			
Variable costs	\$(220,000)	\$(200,000)	\$(420,000)
Fixed costs	(130,000)*	(90,000)*	(220,000)
Total cost of goods sold	\$(350,000)	\$(290,000)	\$ (640,000)
Gross profit	\$ 150,000	\$ 110,000	\$ 260,000
Operating expenses:			
Variable expenses	\$ (95,000)	\$ (60,000)	\$(155,000)
Fixed expenses	(28,000)*	(23,000)*	(51,000)
Total operating expenses	\$(123,000)	\$ (83,000)	\$ (206,000)
Operating income (loss)	\$ 27,000	\$ 27,000	\$ 54,000

*Bran Flakes' fixed costs of \$20,000 and \$6,000 are allocated equally to Corn Flakes and Toasted Oats.

Make or Buy

 Differential analysis helps decide whether to make or buy a part

Make or Buy (continued)

- An automobile manufacturer has been purchasing instrument panels for \$240 a unit
 - Estimation of cost per unit for manufacturing an instrument panel internally is as follows:

Direct materials	\$	80
Direct labor		80
Variable factory overhead		52
Fixed factory overhead		68
Total cost per unit	\$2	280

Should the company make or buy the part?

Exhibit 8: Differential Analysis Report—Make or Buy

Make or Buy Instrument Panels Differential Analysis Report		
Purchase price of an instrument panel		\$240
Differential cost to manufacture:		
Direct materials	\$80	
Direct labor	80	
Variable factory overhead	52	(212)
Cost savings from manufacturing an instrument panel		<u>\$ 28</u>

Replace Equipment

- Assume that a business is considering replacing a machine
 - Old machine
 - Total book value: \$100,000
 - Estimated remaining useful life: 5 years
 - Estimated selling price: \$25,000
 - Cost of new machine: \$250,000
 - Estimated useful life: 5 years
 - Estimated residual value: 0
 - The new machine will reduce annual variable costs from \$225,000 to \$150,000

Exhibit 9: Differential Analysis Report—Replace Machine

Replace Old Machine Differential Analysis Report		
Annual variable costs—present machine	\$ 225,000	
Annual variable costs—new machine	(150,000)	
Annual differential decrease in cost	\$ 75,000	
Number of years applicable	× 5	
Total differential decrease in cost	\$375,000	
Proceeds from sale of present machine	25,000	\$400,000
Cost of new machine		(250,000)
Net differential decrease in cost, five-year total		\$150,000
Annual net differential decrease in cost—new machine		
(\$150,000 ÷ 5 years)		\$ 30,000

Other Factors Affecting Equipment Replacement Decisions

- Differences between the remaining useful life of old equipment and the estimated life of new equipment
- Improvement in the overall quality of a product
- Time value of money and other uses for cash needed to purchase new equipment
- Opportunity cost of alternative courses of action

Opportunity Cost

- Illustration: Cash outlay of \$250,000 for the new machine less the \$25,000 proceeds from the sale of the old machine could be invested to yield a 15% return
 - Annual opportunity cost related to the purchase of the new machine is \$33,750 (\$225,000 × 15%)
 - Opportunity cost of \$33,750 exceeds the annual cost savings of \$30,000
 - It is not beneficial to replace the machine for an annual cost savings of \$30,000

Process or Sell

- A 4,000-gallon batch of kerosene sells at \$2.50 per gallon
 - Cost of producing kerosene is \$2,400 per batch
 - One could continue processing kerosene into gasoline by selling at \$3.50 per gallon for an additional cost of \$650 per batch
 - 20% of the kerosene will evaporate during production
- Should the company sell or process further?

Exhibit 10: Differential Analysis Report—Process or Sell

Process Kerosene Further	
Differential Analysis Report	
Differential revenue from further processing per batch:	
Revenue from sale of gasoline [(4,000 gallons $-$ 800 gallons	
evaporation) \times \$3.50]	
Revenue from sale of kerosene (4,000 gallons \times \$2.50)	
Differential revenue	\$1,200
Differential cost per batch:	
Additional cost of producing gasoline	(650)
Differential income from further processing gasoline per batch	\$ 550

Accept Business at a Special Price

- Companies may be offered the opportunity to sell their products at prices other than the normal prices
 - Differential revenue from accepting the special price is compared to the differential costs of producing and delivering the product to the customer

Accepting Business at a Special Price

- Game Ball Inc. currently sells an average of 10,000 basketballs per month
 - Factory has a monthly productive capacity of 12,500 basketballs
 - Normal (domestic) selling price: \$30 per ball
 - Manufacturing costs
 - Variable costs: \$12.50 per ball
 - Fixed costs: \$7.50 per ball

Exhibit 11: Differential Analysis Report—Sell at Special Price

Sell Basketballs to Exporter	
Differential Analysis Report	
Differential revenue from accepting offer:	
Revenue from sale of 5,000 additional units at \$18	\$ 90,000
Differential cost of accepting offer:	
Variable costs of 5,000 additional units at \$12.50	(62,500)
Differential income from accepting offer	\$27,500

Learning Objective 3

Determine the selling price of a product, using the total cost concept

Setting Normal Product Selling Prices

- Normal selling price must be set high enough to:
 - Cover all expenses
 - Provide a reasonable profit
- Market methods used by managers to determine selling price
 - Demand-based concept
 - Competition-based concept

Cost-Plus Methods

- Managers can use one of the following three cost-plus methods to determine the selling price:
 - Total cost concept
 - Product cost concept
 - Variable cost concept
- Normal Selling Price = Cost Amount per Unit + Markup
 - Management determines a markup based on the desired profit for the product

Exhibit 12: Total Cost Concept of Pricing

Total Cost Concept of Pricing: Nebula Inc.

 Assume the following data for 100,000 digital projection clocks that Nebula Inc. expects to produce and sell during the current year:

Manufacturing costs:		
Direct materials ($$3.00 \times 100,000$)		\$ 300,000
Direct labor (\$10.00 × 100,000)		1,000,000
Factory overhead:		
Variable costs ($$1.50 \times 100,000$)	\$150,000	
Fixed costs	50,000	200,000
Total manufacturing costs		\$1,500,000
Selling and administrative expenses:		
Variable expenses ($$1.50 \times 100,000$)	\$150,000	
Fixed costs	20,000	
Total selling and administrative expenses		170,000
Total cost		\$1,670,000
Desired rate of return		20%
Total assets		\$ 800,000

Total Cost Concept of Pricing: Nebula Inc. (continued 1)

Total cost per unit is calculated as follows:

Total Cost per Unit =
$$\frac{\text{Total Cost}}{\text{Estimated Units Produced and Sold}}$$
$$= \frac{\$1,670,000}{100,000 \text{ units}} = \$16.70 \text{ per unit}$$

The markup percentage is calculated as follows:

Desired Profit = Desired Rate of Return
$$\times$$
 Total Assets = $20\% \times \$800,000 = \$160,000$

Markup Percentage = $\frac{\text{Desired Profit}}{\text{Total Cost}} = \frac{\$160,000}{\$1,670,000} = 9.6\% \text{ (rounded)}$

Total Cost Concept of Pricing: Nebula Inc. (continued 2)

Computation of markup per unit

Markup per Unit = Markup Percentage
$$\times$$
 Total Cost per Unit = $9.6\% \times \$16.70 = \1.60 per unit

Computation of normal selling price

Total cost per unit	\$16.70
Markup per unit	1.60
Normal selling price per unit	\$18.30

Total Cost Concept of Pricing: Nebula Inc. (continued 3)

Income statement

NEBULA INC. Income Statement

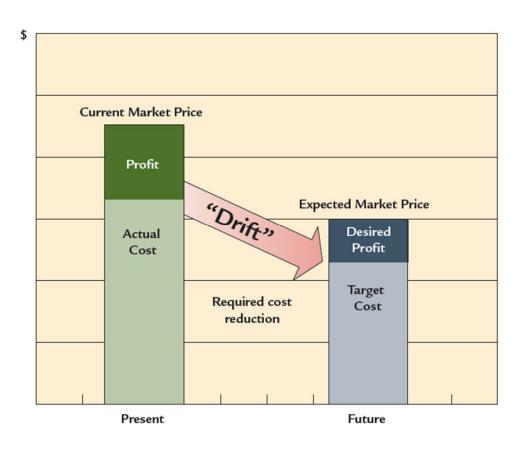
Sales (100,000 units × \$18.30)		\$1,830,000
Expenses:		
Variable (100,000 units $ imes$ \$16.00)	\$1,600,000	
Fixed (\$50,000 + \$20,000)	70,000	(1,670,000)
Operating income		\$ 160,000

Target Costing

 Method of setting prices that combines market-based pricing with a costreduction emphasis

Target Cost = Expected Selling Price - Desired Profit

- A future selling price is anticipated using:
 - Demand-based concepts
 - Competition-based concepts
- Target cost is normally less than the current cost
 - Managers try to reduce costs from the design and manufacture of the product
- Useful in highly competitive markets such as automobiles and the market for smartphones and computer tablets

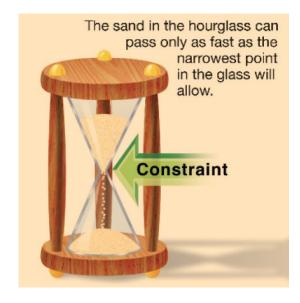


Planned Cost Reduction

- Sometimes referred to as the cost drift
- Ways to reduce cost include:
 - Simplifying the design
 - Reducing the cost of direct materials
 - Reducing the direct labor costs
 - Eliminating waste

Exhibit 13: Target Cost Concept

Warren, Survey of Accounting, Ninth Edition. © 2021 Cengage. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.


Learning Objective 4

Describe and illustrate the use of contribution margin per unit of production constraint for managerial decision making and performance analysis

Production Constraint and Profit

- Demand for a company's product exceeds its ability to produce the product
- Theory of constraints (TOC)
 - Focuses on reducing the influence of bottlenecks on production processes
- Companies should attempt to maximize their profits when faced with production constraints

Warren, Survey of Accounting, Ninth Edition. © 2021 Cengage. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Production Constraint and Profit: Illustration

 Rapidan Tool Company makes three types of wrenches: small, medium, and large

	Small Wrench	Medium Wrench	Large Wrench
Unit selling price	\$130	\$140	\$160
Unit variable cost	(40)	(40)	(40)
Unit contribution margin	\$ 90	\$100	(40) \$120
Heat treatment hours per unit	1 hr.	4 hrs.	8 hrs.

Production Constraint and Profit: Illustration (continued)

 Calculation of unit contribution margin per heat treatment suggests that the small wrench is the most profitable

Small Wrenches

Unit Contribution Margin per Heat Treatment Hour =
$$\frac{$90}{1 \text{ hr.}}$$
 = \$90 per hr.

Medium Wrenches

Unit Contribution Margin per Heat Treatment Hour =
$$\frac{$100}{4 \text{ hrs.}}$$
 = \$25 per hr.

Large Wrenches

Unit Contribution Margin per Heat Treatment Hour =
$$\frac{$120}{8 \text{ hrs.}}$$
 = \$15 per hr

Production Constraints and Pricing

- Unit contribution margin per constraint resource is used adjusts product prices to reflect the product's use of the constraint
- Products that use a large amount of the constrained resource require a higher contribution margin
 - Least profitable of the resources

Production Constraints and Pricing: Illustration

- Rapidan Tool Company cannot decrease the variable cost per unit and the heat treatment hours for the large wrench
- Price of the large wrench that would make it as profitable as the small wrench is determined as follows:

Production Constraints and Pricing: Illustration (continued)

 If the large wrench's price is increased to \$760, it would provide the same unit contribution margin per heat treatment hour as the small wrench

Unit Contribution Margin per Heat Treatment Hour =
$$\frac{\text{Unit Contribution Margin}}{\text{Heat Treatment Hours per Unit}}$$
$$\$90 \text{ per hr.} = \frac{\$720}{8 \text{ hrs.}}$$

End of Chapter 12

