Biology

Concepts and Applications | 9e Starr | Evers | Starr

Chapter 19

Viruses, Bacteria, and Archaea

© Cengage Learning 2015

19.1 What Are Viruses?

- Viruses: noncellular infectious agents
 - Consists of a protein coat around a core of DNA or RNA
 - The coat is enveloped in a bit of plasma membrane derived from a previous host
 - Replicates only in a host cell
 - A virus is far smaller than any cell
 - Has no ribosomes or other metabolic machinery

- Viral structure
 - Either enveloped or non-enveloped
 - Most animal viruses are enveloped
 - Most plant viruses are non-enveloped
 - Herpes viruses are enveloped DNA viruses
 - HIV is an enveloped RNA virus
 - Tobacco mosaic virus has a helical structure, with coat proteins arranged around RNA to form a rod
 - Many animal viruses have a 20-sided protein coat

© Cengage Learning 2015

- Viral replication
 - Each type of virus has structural adaptations that allow it to infect and replicate in hosts of a particular type
 - Replication begins when a virus attaches to membrane proteins on host cell
 - Genetic material enters cell
 - Results in cellular hijacking

- Bacteriophage (phages)
 - A virus that infects bacteria and archaea
 - Have two replication pathways
 - Lytic: multiplication is rapid, and new viral particles are released by lysis
 - Lysogenic: the virus enters a latent state that extends the cycle

Animation: Bacteriophage multiplication cycles

Please wait, loading

0%

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

- HIV replication
 - HIV is an enveloped RNA virus that causes the disease AIDS
 - HIV replicates inside human white blood cells
 - Spikes of viral protein attach to proteins in the cell's plasma membrane
 - Drugs that fight HIV interfere with viral binding to the host, reverse transcription, integration of DNA, or formation of viral proteins

- Nine steps in HIV replication
 - 1. Virus binds to a host cell
 - 2. Viral RNA and enzymes enter cell
 - 3. Viral reverse transcriptase uses viral RNA to make double-stranded viral DNA
 - 4. Viral DNA integrates into host genome
 - 5. Transcription produces viral RNA

- Nine steps in HIV replication (cont'd.)
 - 6. Some viral RNA is translated to produce viral proteins
 - 7. Other viral RNA forms the new viral genome
 - 8. Viral proteins and RNA self-assemble at the host membrane
 - 9. New virus buds with an envelope of host membrane

 RNA viruses that use reverse transcriptase to produce viral DNA in a host are called retroviruses

Animation: HIV replication cycle

Please wait, loading

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

19.2 How Do Viruses Affect Human Health?

- Viral diseases
 - Pathogens: disease-causing agents
 - Usually produce mild symptoms persist in body for long periods
 - Can be latent and then reawaken

CDC/Dr. Hermann

- Common viral diseases
 - Nonenveloped viruses:
 - Adenoviruses (colds)
 - Viral gastroenteritis (stomach flu)
 - Human papillomavirus (genital warts, cervical cancer)

- Enveloped viruses
 - Herpes viruses (cold sores, genital herpes, infectious mononucleosis, chicken pox)
 - Influenza (flu)
 - Mumps, measles, and German measles

- Emerging viral diseases
 - Changes to viral genomes as a result of mutation or gene exchanges can alter the properties of a viral disease
 - A disease that was previously unknown, is new to humans, or has recently begun spreading to a new region

- West nile fever
 - An enveloped RNA virus that replicates in birds
 - Mosquitoes carry the virus from host to host (the vector for this virus)
 - Attacks the nervous system and can be fatal
 - An endemic disease throughout the continental United States

How Do Viruses Affect Human Health?

- Ebola hemorrhagic fever
 - Ebola virus is highly contagious to humans
 - Symptoms include fever, muscle pain, and massive internal bleeding
 - Death rate is 90 percent

How Do Viruses Affect Human Health?

- Viral recombination
 - Viruses have genomes that can mutate
 - RNA viruses can mutate quickly
 - Viral genomes can also exchange genes when two viruses infect a host at the same time

How Do Viruses Affect Human Health?

- Viral recombination (cont'd.)
 - Avian influenza H5N1 (bird flu) occasionally infects people who are in contact with birds, and has a high mortality rate
 - Influenza H1N1 (swine flu) first appeared in 2009, can cause severe respiratory symptoms, and is easily transmitted

19.3 How Do Viruses Affect Plant Health?

- Viroids
 - A new type of plant pathogen
 - A small RNA, circular and single-stranded without a protein coat
 - Are ribozymes (RNAs with enzymatic activity)
 - Discovered in 1971
 - Viroids do not encode proteins

How Do Viruses Affect Plant Health?

athological Society, St. Paul, MN; (6B) Photo by Barry Fitzgerald, Courtesy of USDA rican Phyto 1661 nission from Compendium of Tobacco Dise (6A) Courtesy D. Shew, Reproduced by

19.4 How Are Bacteria and Archaea Similar?

- Bacteria and archaea
 - Prokaryotes
 - Small, structurally simple and single-celled
 - Three cell shapes
 - Coccus (spherical)
 - Bacillus (rod-shaped)
 - Spirillum (spiral)

Animation: Typical prokaryotic cell

Please wait, loading

0%

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

How Are Bacteria and Archaea Similar?

- Prokaryotic traits
 - No nucleus, endoplasmic reticulum, or Golgi bodies
 - Single chromosome (a circular DNA molecule); many species also contain plasmids
 - Cell wall (in most species)

- Prokaryotic traits (cont'd.)
 - Ribosomes distributed in the cytoplasm
 - Asexual reproduction by binary fission
 - Capacity for gene exchange among existing cells through conjugation, transduction, and transformation

- Reproduction and gene exchange
 - Reproduce by *binary fission*:
 - Asexual reproduction
 - Replication of a single, circular chromosome
 - Division of a parent cell into two genetically equivalent descendants

- Four steps in binary fission
 - Circular chromosome attaches to inside of plasma membrane
 - Cell duplicates chromosome, attaches copy beside the original, and adds membrane and wall material between them
 - When cell has almost doubled in size, new membrane and wall are deposited
 - Two genetically identical cells result

Animation: Prokaryotic fission

Please wait, loading

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

Horizontal gene transfers

Move genes between existing individuals (cells)

- Conjugation
 - One cell gives a plasmid to the other
 - One cell extends a sex pilus out to another cell
 - The cell that made the sex pilus passes a copy of its plasmid to its partner

Animation: Prokaryotic conjugation

Please wait, loading

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

• Metabolic diversity of prokaryotes

Mode of Nutrition	Energy Source	Carbon Source
Photoautotrophic	Sunlight	Carbon dioxide
Chemoautotrophic	Inorganic substances	Carbon dioxide
Photoheterotrophic	Sunlight	Organic compounds
Chemoheterotrophic	Organic compounds	Organic compounds

	ENERGY SOURCE		
CARBON	Light	Chemicals	
SOURCE			
Inorganic	Photoautotrophs	Chemoautotrophs	
source such as CO ₂	bacteria, archaea, photosynthetic protists, plants	bacteria, archaea	
Organic	Photoheterotrophs	Chemoheterotrophs	
source such as glucose	bacteria, archaea	bacteria, archaea, fungi, animals, nonphotosynthetic protists	

© Cengage Learning. All Rights Reserved.

19.5 What Are Some Major Bacterial Lineages?

- Bacteria are widespread, abundant, and diverse
 - Most either harmless or beneficial
- Many bacteria have essential ecological roles:
 - Decomposers
 - Cycle nutrients
 - Form partnerships with other species

Cyanobacteria

- Produce oxygen during photosynthesis
- Carry out *nitrogen fixation*, producing ammonia that algae and plants need as a nutrient
- Partner with fungi and form lichens
- Spirulina is grown commercially

© P. W. Johnson and J. MeN. Sieburth, Univ. Rhode Island/BPS

- Proteobacteria are the largest bacterial lineage
 - Some are nitrogen-fixers (*Rhizobium*)
 - Myxobacteria show remarkable cooperative behavior (multicelled fruiting bodies with spores)
 - Escherichia coli are part of our normal flora

- Thiomargarita namibiensis
 - The largest known bacterium
 - Has an enormous vacuole that holds sulfur and nitrate
- Some important pathogens: Salmonella, Campylobacter, Helicobactor pylori, Vibrio cholerae
- *Rickettsias* (intracellular parasites) are the closest relatives of mitochondria

© Cengage Learning 2015

- Gram staining
 - Method used to prepare bacteria for examination under a microscope
 - Process used to distinguish groups based on cell wall structure
 - Thick-walled Gram-positive bacteria are tinted purple
 - Thinner-walled Gram-negative bacteria such as cyanobacteria and proteobacteria are stained pink

- Gram-positive bacteria have thick walls
- Gram-negative bacteria have thinner walls
- Some Gram-positive soil bacteria (*Clostridium*, *Bacillus*) produce endospores
 - Allow them to survive
 - Boiling, freezing, radiation, and disinfectants

SciMAT/Science Source

Spirochetes

- Spiral-shaped bacteria
- Include aquatic decomposers, nitrogen fixers, and bacteria that live in cattle gut and break down cellulose
- Some are pathogens
 - Cause of sexually-transmitted disease syphilis
 - Cause of Lyme disease, transmitted by ticks

Stem Jems/Science Source.

© Cengage Learning 2015

19.6 How Do Bacteria Affect Human Health?

- Normal flora
 - Normally harmless or beneficial microorganisms that typically live in or on a body
- Some endospore-forming bacteria make deadly toxins:
 - Bacillus anthracis: anthrax
 - Clostridium tetani: tetanus
 - C. botulinum: botulism

How Do Bacteria Affect Human Health? (cont'd.)

- Dangerous infections:
 - Mycobacterium tuberculosis: tuberculosis
 - Streptococcus: strep throat, "flesh-eating bacteria"
 - Staphylococcus: Antibiotic-resistant staph infections

How Do Bacteria Affect Human Health? (cont'd.)

David Evans/National Geographic Creative.

19.7 How Were Archaea Discovered?

- Biologists historically divided all life into two groups, prokaryotes and eukaryotes
- New evidence revealed differences in structure, organization, and gene sequences between bacteria and archaeans
- The three domain model is now considered correct

How Were Archaea Discovered? (cont'd.)

© Cengage Learning. All Rights Reserved.

How Were Archaea Discovered? (cont'd.)

© Cengage Learning 2015

19.8 Where Do Archaea Live?

- Archaeans are more diverse and widely distributed than previously thought
 - Many archaeans are:
 - Methanogens (methane makers)
 - Extreme halophiles (salt lovers)
 - Extreme thermophiles (heat lovers)
- Archaeans coexist with bacteria in many habitats and can exchange genes with them

Where Do Archaea Live? (cont'd.)

19.9 Sharing Viruses

- Scientists use the knowledge of evolution to investigate how a new disease such as AIDS can arise and spread in the human population
 - By sequencing the HIV-1 genome and comparing it to genomes of primate viruses, researchers found that the human virus evolved from simian immunodeficiency virus (SIV), which infects wild chimpanzees

Sharing Viruses (cont'd.)

Michael Nichols/National Geographic Creative.

© Cengage Learning 2015