Biology

Concepts and Applications | 9e Starr | Evers | Starr

Chapter 12

Meiosis and Sexual Reproduction

© Cengage Learning 2015

12.1 Why Sex?

- In asexual reproduction, a single individual gives rise to offspring that are identical to itself and others
- In sexual reproduction, two individuals mix their genetic material

Why Sex? (cont'd.)

Susumu Nishinaga/Science Source.

© Cengage Learning 2015

Introducing Alleles

 Somatic (body) cells of sexuallyreproducing eukaryotes contain pairs of homologous chromosomes:

- One from the mother and one from the father

- Homologous chromosomes:
 - Carry genes (one from the mother and one from the father) of the same characteristics
- Different forms of the same gene are called alleles

Introducing Alleles (cont'd.)

- Paired genes on homologous chromosomes may vary in DNA sequences as *alleles*
 - Arise by mutation
 - Are the basis of differences in shared traits
- Offspring of sexual reproducers inherit new combinations of parental alleles

- Results in new combinations of traits

Introducing Alleles (cont'd.)

Genes occur in pairs on homologous chromosomes.

The members of each pair of genes may be identical, or they may differ slightly, as alleles.

On the Advantages of Sex

- Sex mixes up the genes of two parents, so offspring have unique combinations of traits
- Diversity offers a better chance of surviving environmental change than clones

Red Queen Hypothesis

- In reference to Lewis Carroll's book Through the Looking Glass
 - Queen of Hearts tells Alice, "It takes all the running you can do, to keep in the same place"
- Organisms must constantly adapt and evolve in an ever-changing environment
 - Used to explain the evolution of sexual reproduction

12.2 Why Is Meiosis Necessary for Sexual Reproduction?

- Asexual reproduction produces clones
- Sexual reproduction mixes up alleles from two parents
 - Involves the fusion of gametes, mature reproductive cells
- Meiosis: a nuclear division mechanism that occurs in reproductive cells of eukaryotes

Meiosis Halves the Chromosome Number

- Gametes are specialized cells that are the basis of sexual reproduction
- Derive from germ cells: immature reproductive cells
- All gametes are haploid (*n*), but they differ in other details
- Gamete formation differs among plants and animals

Francis Leroy, Biocosmos/Science Photo Library/Science Source

© Cengage Learning 2015

- Haploid germ cells form by meiosis
- Gametes form when these cells divide by mitosis

© Cengage Learning. All Rights Reserved.

- In males, the diploid germ cell develops into sperm
- In females, a diploid germ cell becomes an egg

- Occurs in the gametes mature reproductive cells
 - Gametes are haploid (*n*)
 - Their chromosome number is half of the diploid (2*n*) number
- Meiosis is a nuclear division

- Nuclear division that halves the chromosome number in the reproductive cells
 - Ensures that offspring have the same number of chromosomes as the parents

- DNA replication occurs prior to meiosis:
 - The nucleus is diploid (2n) with two sets of chromosomes, one from each parent
 - During meiosis, chromosomes of a diploid nucleus become distributed into four haploid nuclei
- Meiosis halves diploid (2n) chromosome to the haploid (n) number for forthcoming gametes

© Cengage Learning 2015

Fertilization Restores the Chromosome Number

- Haploid gametes form by meiosis
- The diploid chromosome number is restored at fertilization
- Two haploid gametes fuse a zygote is formed
- A zygote is a cell formed by the fusion of two gametes
 - The first cell of a new individual

Fertilization Restores the Chromosome Number (cont'd.)

- If meiosis did not precede fertilization, the chromosome number would double with every generation
- Chromosome number changes can have drastic consequences in animals
- An individual's set of chromosomes is like a fine-tuned blueprint that must be followed exactly to have normal functions

12.3 What Happens to a Cell During Meiosis?

- Meiosis I: Prophase I
 - Homologous chromosomes condense, pair up, and swap segments
 - Spindle microtubules attach to chromosomes as the nuclear envelope breaks up

Meiosis I: Metaphase I

 The homologous chromosome pairs are aligned midway between spindle poles

Meiosis I : Anaphase I

 The homologous chromosomes separate and begin heading toward the spindle poles

- Meiosis I: Telophase I
 - Two clusters of chromosomes reach the spindle poles
 - A new nuclear envelope forms around each cluster, so two haploid (n) nuclei form

3D ANIMATION: Meiosis

- Meiosis II: Prophase II
 - The chromosomes condense
 - The nuclear envelope breaks up
 - Spindle microtubules attach to each sister chromatid

Meiosis II: Metaphase II

 The (still duplicated) chromosomes are aligned midway between poles of the spindle

- Meiosis II: Anaphase II
 - All sister chromatids separate
 - The (now unduplicated) chromosomes head to the spindle poles

- Meiosis II: Telophase II
 - A complete set of chromosomes clusters at each spindle pole
 - A new nuclear envelope encloses each cluster
 - Four haploid (n) nuclei form

CREDITS: (4) Bottom photos, With thanks to the John Innes Foundation Trustees, computer enhanced by Gary Head; Top art, © Cengage Learning.

12.4 How Meiosis Introduces Variations in Traits

- Two events in meiosis introduce novel combinations of alleles into gametes:
 - Crossing over in prophase I
 - Segregation of chromosomes into gametes
- Along with fertilization, these events contribute to the variation in combinations of traits among the offspring of sexually reproducing species

Crossing Over in Prophase I

- Chromatids of homologous chromosomes condense and align along their length and exchange segments
 - Introduces novel combinations of traits among offspring

ANIMATION: Crossing over

Please wait, loading

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

Chromosome Segregation

- When homologous chromosomes separate in meiosis I, one of each chromosome pair goes to each of the two new nuclei
- For each chromosome pair, the maternal or paternal version is equally likely to end up in either nucleus

Chromosome Segregation (cont'd.)

- Human gametes have 23 pairs of homologous chromosomes
 - Each time a human germ cell undergoes meiosis the four gametes that form end up with one of 8,388,608 (or 223) possible combinations of homologous chromosomes
- Crossing over increases these combinations

Chromosome Segregation (cont'd.)

- The chance that the maternal or paternal version of any chromosome will end up in a particular nucleus is 50 percent – Why?
 - Due to the way the spindle segregates the homologous chromosome during meiosis I
 - In prophase I, chromosomes are attached to spindle poles
 - Each homologous partner becomes attached to opposite spindle poles

ANIMATION: Random alignment

Please wait, loading

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

12.5 Are the Processes of Mitosis and Meiosis Related?

- There are striking parallels between the four stages of mitosis and meiosis II
- Many more similarities exist at the molecular level
- Meiosis may have evolved by remodeling the existing mechanisms of mitosis or for repairing damaged DNA

ANIMATION: Mitosis step-by-step

To play movie you must be in Slide Show Mode PC Users: Please wait for content to load, then click to play Mac Users: <u>CLICK HERE</u>

© Cengage Learning 2015

Are the Processes of Mitosis and Meiosis Related? (cont'd.)

- Evidence for this hypothesis includes a host of shared molecules
 - Includes the products of the BRCA genes made by all eukaryotes
- By fixing the problems with DNA (mismatched base pairs), these molecules maintain integrity of cell's chromosomes

Are the Processes of Mitosis and Meiosis Related? (cont'd.)

Image supplied by Renée H. Martin, Ph.D.

© Cengage Learning 2015

12.6 Application: How To Survive 80 Million Years Without Sex

- In nature, there are a few all-female species of fishes, reptiles, and birds but not mammals
 - Females have been reproducing themselves for 80 million years through cloning themselves
- Asexual reproduction is a poor long-term strategy because it lacks crossing over that leads to genetic diversity

How To Survive 80 Million Years Without Sex (cont'd.)

How To Survive 80 Million Years Without Sex (cont'd.)

- Bdelloid rotifers: microscopic animals found in fresh water
 - Males are not present within the species
 - Females reproduce by asexual cloning
 - Have diversified into 360 species
 - Can import genes from bacteria, fungi, protists, and even plants
 - About 10 percent of their active genes have been pilfered from other organisms