Quadratic Equations and Inequalities

Copyright © Cengage Learning. All rights reserved.

Solving Quadratic Equations by Factoring or by Taking Square Roots

Copyright © Cengage Learning. All rights reserved.

- 1 Solve quadratic equations by factoring
- 2 Solve quadratic equations by taking square roots

A **quadratic equation** is an equation of the form $ax^2 + bx + c = 0$, where *a* and *b* are coefficients, *c* is a constant, and $a \neq 0$.

A quadratic equation is in **standard form** when the polynomial is in descending order and equal to zero.

Because the degree of the polynomial $ax^2 + bx + c = 0$ is 2, a quadratic equation is also called a **second-degree** equation.

The Principle of Zero Products states that if the product of two factors is zero, then at least one of the factors equals zero.

PRINCIPLE OF ZERO PRODUCTS

If the product of two factors is zero, then at least one of the factors equals zero. If ab = 0, then a = 0 or b = 0.

EXAMPLES

- 1. Suppose 3x = 0. The factors are 3 and x. The product equals zero, so at least one of the factors must be zero. Because $3 \neq 0$, we know that x = 0.
- 2. Suppose -4(x 4) = 0. The factors are -4 and x 4. The product equals zero, so at least one of the factors must be zero. Beause $-4 \neq 0$, we know that x 4 = 0, which means x = 4.
- 3. Suppose (x 2)(x + 3) = 0. The factors are x 2 and x + 3. The product equals zero, so x 2 = 0 or x + 3 = 0. If x 2 = 0, then x = 2. If x + 3 = 0, then x = -3.

The Principle of Zero Products can be used to solve some quadratic equations.

Example 1

Solve by factoring: $2x^2 - 3x = 2$

Solution: $2x^2 - 3x = 2$ $2x^2 - 3x - 2 = 0$ Write the equation in standard form. (2x+1)(x-2) = 0Factor the trinomial. 2x + 1 = 0 x - 2 = 0Use the Principle of Zero Products. The product of 2x + 1 and x - 22x = -1 x = 2is 0. Therefore, at least one of the factors is zero. $x = -\frac{1}{2}$ The solutions are $-\frac{1}{2}$ and 2.

Example 2

Solve by factoring: (x + 1)(2x - 1) = 2x + 2

Solution: (x + 1)(2x - 1) = 2x + 2 $2x^2 + x - 1 = 2x + 2$ $2x^2 - x - 3 = 0$ (x + 1)(2x - 3) = 0x + 1 = 0 2x - 3 = 0 $x = -1 \qquad \qquad x = \frac{3}{2}$ The solutions are -1 and $\frac{3}{2}$.

Multiply the factors on the left side.

Write the equation in standard form.

Factor.

Use the Principle of Zero Products.

8

When a quadratic equation has two solutions that are the same number, the solution is called a **double root** of the equation.

The Principle of Zero Products also can be used to write an equation that has specific roots. For instance, suppose *r* and *s* are given as solutions of an equation. Then one possible equation is (x - r)(x - s) = 0, as shown below.

$$(x-r)(x-s)=0$$

Use the Principle of Zero Products.

$$x - r = 0 \qquad \qquad x - s = 0$$

Solve for *x*.

$$x = r$$
 $x = s$

The solutions are *r* and *s*.

Given two solutions *r* and *s* and the equation (x - r)(x - s) = 0, we can find a quadratic equation that has the given solutions.

Example 3

Write a quadratic equation that has integer coefficients and has solutions $\frac{2}{3}$ and $\frac{1}{2}$.

Solution:

$$(x-r)(x-s)=0$$

 $\left(x-\frac{2}{3}\right)\left(x-\frac{1}{2}\right)=0$

Replace *r* by $\frac{2}{3}$ and *s* by $\frac{1}{2}$.

 $x^2 - \frac{7}{6}x + \frac{1}{3} = 0$

Multiply the binomials.

cont'd

$$6\left(x^2 - \frac{7}{6}x + \frac{1}{3}\right) = 6 \cdot 0$$

Multiply each side of the equation by 6, the LCD.

 $6x^2 - 7x + 2 = 0$

A quadratic equation with solutions $\frac{2}{3}$ and $\frac{1}{2}$ is $6x^2 - 7x + 2 = 0$.

Solve quadratic equations by taking square roots

Solve quadratic equations by taking square roots

If *x* is a variable that can be positive or negative, then $\sqrt{x^2} = |x|$. This fact is used to solve a quadratic equation by taking square roots.

An equation containing the square of a binomial can be solved by taking square roots.

Solve by taking square roots: $3(x - 2)^2 + 12 = 0$

Solution:

 $3(x - 2)^{2} + 12 = 0$ $3(x - 2)^{2} = -12$ $(x - 2)^{2} = -4$ $\sqrt{(x - 2)^{2}} = \sqrt{-4}$ Take the square root of each side of the equation. Then simplify. |x - 2| = 2i

cont'd

$$x - 2 = \pm 2i$$
$$x - 2 = 2i$$
$$x - 2 = -2i$$

Solve for x.

x =	2	+ 2i	X	= 2 - 2	i
~ ~					

The solutions are 2 + 2i and 2 - 2i.