

Copyright © Cengage Learning. All rights reserved.

Solving Nonlinear Systems of Equations

Objective

Solve nonlinear systems of equations

Solving Nonlinear Systems of Equations

Solving Nonlinear Systems of Equations

A **nonlinear system of equations** is one in which one or more equations of the system is not a linear equation.

Nonlinear systems of equations can be solved by using either a substitution method or an addition method.

Example 1

Solve:
$$y = 2x^2 - 3x - 1$$

 $y = x^2 - 2x + 5$

Solution:

(1)
$$y = 2x^{2} - 3x - 1$$

$$y = x^{2} - 2x + 5$$

$$2x^{2} - 3x - 1 = x^{2} - 2x + 5$$

$$x^{2} - x - 6 = 0$$

$$(x + 2)(x - 3) = 0$$

$$x + 2 = 0 \qquad x - 3 = 0$$

$$x = -2 \qquad x = 3$$

Use the substitution method to solve for *x*.

Example 1 – Solution

$$y = 2x^{2} - 3x - 1$$

$$y = 2(-2)^{2} - 3(-2) - 1$$

$$y = 8 + 6 - 1$$

$$y = 13$$

$$y = 2x^{2} - 3x - 1$$

$$y = 2(3)^{2} - 3(3) - 1$$

$$y = 18 - 9 - 1$$

$$y = 8$$

Substitute each value of x into equation (1) or equation (2) and solve for y. We will use equation (1).

When x = -2, y = 13.

When x = 3, y = 8.

The solutions are (-2, 13) and (3, 8).

Example 2

Solve:
$$3x^2 - 2y^2 = 26$$

 $x^2 - y^2 = 5$

Solution:

$$(1) 3x^2 - 2y^2 = 26$$

(2)
$$x^2 - y^2 = 5$$

$$3x^2 - 2y^2 = 26$$
$$-2x^2 + 2y^2 = -10$$

$$x^2 = 16$$

$$x = \pm 4$$

Use the addition method. We will eliminate y. Multiply equation (2) by -2 and solve for x.

Example 2 – Solution

$$x^{2} - y^{2} = 5$$

$$(-4)^{2} - y^{2} = 5$$

$$16 - y^{2} = 5$$

$$-y^{2} = -11$$

$$y^{2} = 11$$

$$y = \pm \sqrt{11}$$

Substitute each value of x into equation (1) or equation (2) and solve for y. We will use equation (2).

When
$$x = -4$$
, $y = -\sqrt{11}$ or $y = \sqrt{11}$.

Example 2 – Solution

$$x^{2} - y^{2} = 5$$
 $4^{2} - y^{2} = 5$
 $16 - y^{2} = 5$
 $-y^{2} = -11$
 $y^{2} = 11$
 $y = \pm \sqrt{11}$
When $x = 4$, $y = -\sqrt{11}$ or $y = \sqrt{11}$.

The solutions are $(-4, -\sqrt{11})$, $(-4, \sqrt{11})$, $(4, -\sqrt{11})$, and $(4, \sqrt{11})$.