

Copyright © Cengage Learning. All rights reserved.

Multiplication of Monomials

Copyright © Cengage Learning. All rights reserved.

- 1 Multiply monomials
- 2 Simplify powers of monomials

Multiply monomials

In the exponential expression x^5 , x is the base and 5 is the exponent. The exponent indicates the number of times the base occurs as a factor.

The product of exponential expressions with the *same* base can be simplified by writing each expression in factored form and writing the result with an exponent.

$$x^{3} \cdot x^{2} = \underbrace{\begin{pmatrix} 3 \text{ factors} \\ x \cdot x \cdot x \end{pmatrix}}_{5 \text{ factors}} \underbrace{\begin{pmatrix} 2 \text{ factors} \\ x \cdot x \cdot x \end{pmatrix}}_{5 \text{ factors}}$$

$$= x \cdot x \cdot x \cdot x \cdot x$$

Adding the exponents results in the same product.

$$x^3 \cdot x^2 = x^{3+2}$$

= **x**⁵

RULE FOR MULTIPLYING EXPONENTIAL EXPRESSIONS

If *m* and *n* are integers, then $x^m \cdot x^n = x^{m+n}$.

EXAMPLES

In each example below, we are multiplying two exponential expressions with the same base. Simplify the expression by adding the exponents.

1.
$$x^4 \cdot x^7 = x^{4+7} = x^1$$

$$2. \quad y \cdot y^5 = y^{1+5} = y^6$$

3. $a^2 \cdot a^6 \cdot a = a^{2+6+1} = a^9$

Example 1

Multiply: $(2xy)(3x^2y)$

Solution:

$$(2xy) (3x^2y) = (2 \cdot 3)(x \cdot x^2)(y \cdot y)$$

$$= 6x^{1+2}y^{1+1}$$

 $= 6x^3y^2$

Use the Commutative and Associative Properties of Multiplication to rearrange and group factors.

Multiply variables with the same base by adding the exponents.

Simplify powers of monomials

Simplify powers of monomials

A power of a monomial can be simplified by rewriting the expression in factored form and then using the Rule for Multiplying Exponential Expressions.

RULE FOR SIMPLIFYING POWERS OF EXPONENTIAL EXPRESSIONS

If *m* and *n* are integers, then $(x^m)^n = x^{mn}$.

EXAMPLES

Each example below is a power of an exponential expression. Simplify the expression by multiplying the exponents.

1.
$$(x^5)^2 = x^{5 \cdot 2} = x^{10}$$

$$2. (y^3)^4 = y^{3 \cdot 4} = y^{12}$$

Simplify powers of monomials

RULE FOR SIMPLIFYING POWERS OF PRODUCTS

If *m*, *n*, and *p* are integers, then $(x^m y^n)^p = x^{mp} y^{np}$.

EXAMPLES

Each example below is a power of a product of exponential expressions. Simplify the expression by multiplying each exponent inside the parentheses by the exponent outside the parentheses.

1.
$$(c^5d^3)^6 = c^{5\cdot 6}d^{3\cdot 6} = c^{30}d^{18}$$

2.
$$(3a^2b)^3 = 3^{1\cdot 3}a^{2\cdot 3}b^{1\cdot 3} = 3^3a^6b^3 = 27a^6b^3$$

Simplify: $(-2x)(-3xy^2)^3$

Solution:
$$(-2x)(-3xy^2)^3 = (-2x)(-3)^3 x^3y^6$$

 $= (-2x)(-27) x^3 y^6$

$$= [-2(-27)](x \cdot x^3)y^6$$

 $= 54x^4y^6$

Multiply each exponent in $-3xy^2$ by the exponent outside the parentheses.

Simplify $(-3)^3$.

Use the Properties of Multiplication to rearrange and group factors.

Multiply variable expressions with the same base by adding the exponents.