
Solving Equations and Inequalities

Copyright © Cengage Learning. All rights reserved.

CHAPTER

Value Mixture and Uniform Motion Problems

Copyright © Cengage Learning. All rights reserved.

- 1 Value mixture problems
- 2 Uniform motion problems

Value mixture problems

Value mixture problems

A value mixture problem involves combining two ingredients that have different prices into a single blend. For example, a coffee merchant may blend two types of coffee into a single blend, or a candy manufacturer may combine two types of candy to sell as a "variety pack."

The solution of a value mixture problem is based on the equation V = AC, where V is the value of an ingredient, A is the amount of the ingredient, and C is the cost per unit of the ingredient.

How many ounces of a silver alloy that costs \$6 per ounce must be mixed with 10 oz of a silver alloy that costs \$8 per ounce to make a mixture that costs \$6.50 per ounce?

Strategy:

Ounces of \$6 alloy: x
Ounces of \$8 alloy: 10
Ounces of \$6.50 mixture: x + 10

	Amount	Cost	Value
\$6 alloy	x	6	<u>6</u> x
\$8 alloy	10	8	8(10)
\$6.50 mixture	10 + x	6.50	6.50(10 + x)

• The sum of the values before mixing equals the value after mixing.

6x + 8(10) = 6.50(10 + x) 6x + 80 = 65 + 6.5x -0.5x + 80 = 65 -0.5x = -15x = 30

30 oz of the \$6 silver alloy must be used.

The value of the \$6 alloy plus the value of the \$8 alloy equals the value of the mixture.

Uniform motion problems

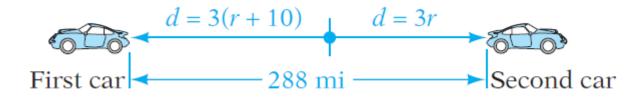
Uniform motion problems

A train that travels constantly in a straight line at 50 mph is in *uniform motion*. **Uniform motion** means the speed of an object does not change.

The solution of a uniform motion problem is based on the equation d = rt, where d is the distance traveled, r is the rate of travel, and t is the time spent traveling.

Two cars, the first traveling 10 mph faster than the second, start at the same time from the same point and travel in opposite directions. In 3 h, they are 288 mi apart. Find the rate of the second car.

Strategy:


• Rate of second car: r

Rate of first car: r + 10

	Rate	Time	Distance
First car	r + 10	3	3(r + 10)
Second car	r	3	3r

Example 2

• The total distance traveled by the two cars is 288 mi.

Solution:

$$3(r + 10) + 3r = 288$$

$$3r + 30 + 3r = 288$$

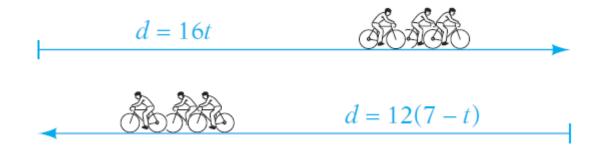
6*r* + 30 = 288 6*r* = 258 *r* = 43 The distance traveled by the first car plus the distance traveled by the second car is 288 mi.

The second car is traveling 43 mph.

cont'd

A bicycling club rides out into the country at a speed of 16 mph and returns over the same road at 12 mph. How far does the club ride out into the country if it travels a total of 7 h?

Strategy:


• Time spent riding out: *t*

Time spent riding back: 7 - t

	Rate	Time	Distance
Out	16	t	16 <i>t</i>
Back	12	7 - t	12(7 - t)

• The distance out equals the distance back.

Solution:

16t = 12(7 - t) 16t = 84 - 12t 28t = 84 t = 3The time is 3h. Find the distance.

The distance out = 16t = 16(3) = 48.

The club rides 48 mi into the country.

cont'd